[Anthony] holding the EE8 kit

Making A 2-Transistor AM Radio With A Philips Electronic Engineer EE8 Kit From 1966

Back in 1966, a suitable toy for a geeky kid was a radio kit. You could find simple crystal radio sets or some more advanced ones. But some lucky kids got the Philips Electronic Engineer EE8 Kit on Christmas morning. [Anthony Francis-Jones] shows us how to build a 2-transistor AM radio from a Philips Electronic Engineer EE8 Kit.

According to [The Radar Room], the kit wasn’t just an AM radio. It had multiple circuits to make (one at a time, of course), ranging from a code oscillator to a “wetness detector.”

The kit came with a breadboard and some overlays for the various circuits, along with the required components. It relied on springs, friction, and gravity to hold most of the components to the breadboard. A little wire is used, but mostly the components are connected to each other with their leads and spring terminals.

Continue reading “Making A 2-Transistor AM Radio With A Philips Electronic Engineer EE8 Kit From 1966”

The Singing Dentures Of Manchester And Other Places

Any radio amateur will tell you about the spectre of TVI, of their transmissions being inadvertently demodulated by the smallest of non-linearity in the neighbouring antenna systems, and spewing forth from the speakers of all and sundry. It’s very much a thing that the most unlikely of circuits can function as radio receivers, but… teeth? [Ringway Manchester] investigates tales of musical dental work.

Going through a series of news reports over the decades, including one of Lucille Ball uncovering a hidden Japanese spy transmitter, it’s something all experts who have looked at the issue have concluded there is little evidence for. It was also investigated by Mythbusters. But it’s an alluring tale, so is it entirely fabricated? What we can say is that teeth are sensitive to sound, not in themselves, but because the jaw provides a good path bringing vibrations to the region of the ear. And it’s certainly possible that the active chemical environment surrounding a metal filling in a patient’s mouth could give rise to electrical non-linearities. But could a human body in an ordinary RF environment act as a good enough antenna to provide enough energy for something to happen? We have our doubts.

It’s a perennial story (even in fiction), though, and we’re guessing that proof will come over the coming decades. If the tales of dental music and DJs continue after AM (or Long Wave in Europe) transmissions have been turned off, then it’s likely they’re more in the mind than in the mouth. If not, then we might have missed a radio phenomenon. The video is below the break.

Continue reading “The Singing Dentures Of Manchester And Other Places”

Meshtastic: A Tale Of Two Cities

If I’m honest with myself, I don’t really need access to an off-grid, fault-tolerant, mesh network like Meshtastic. The weather here in New Jersey isn’t quite so dynamic that there’s any great chance the local infrastructure will be knocked offline, and while I do value my privacy as much as any other self-respecting hacker, there’s nothing in my chats that’s sensitive enough that it needs to be done off the Internet.

But damn it, do I want it. The idea that everyday citizens of all walks of life are organizing and building out their own communications network with DIY hardware and open source software is incredibly exciting to me. It’s like the best parts of a cyberpunk novel, without all the cybernetic implants, pollution, and over-reaching megacorps. Well, we’ve got those last two, but you know what I mean.

Meshtastic maps are never exhaustive, but this gives an idea of node density in Philly versus surrounding area.

Even though I found the Meshtastic concept appealing, my seemingly infinite backlog of projects kept me from getting involved until relatively recently. It wasn’t until I got my hands on the Hacker Pager that my passing interest turned into a full blown obsession. But it’s perhaps not for the reason you might think. Traveling around to different East Coast events with the device in my bag, it would happily chirp away when within range of Philadelphia or New York, but then fall silent again once I got home. While I’d get the occasional notification of a nearby node, my area had nothing like the robust and active mesh networks found in those cities.

Well, they say you should be the change you want to see in the world, so I decided to do something about it. Obviously I wouldn’t be able to build up an entire network by myself, but I figured that if I started standing up some nodes, others might notice and follow suit. It was around this time that Seeed Studio introduced the SenseCAP Solar node, which looked like a good way to get started. So I bought two of them with the idea of putting one on my house and the other on my parent’s place down the shore.

The results weren’t quite what I expected, but it’s certainly been an interesting experience so far, and today I’m even more eager to build up the mesh than I was in the beginning.

Continue reading “Meshtastic: A Tale Of Two Cities”

2G Gone? Bring It Back Yourself!

Some parts of the world still have ample 2G coverage; for those of in North America, 2G is long gone and 3G has either faded into dusk or beginning its sunset. The legendary [dosdude1] shows us it need not be so, however: Building a Custom 2G GSM Cellular Base Station is not out of reach, if you are willing to pay for it. His latest videos show us how.

Before you start worrying about the FCC or its equivalents, the power here is low enough not to penetrate [dosdude]’s walls, but technically this does rely in flying under the radar. The key component is a Nuand BladeRF x40 full-duplex Software Defined Radio, which is a lovely bit of open-source hardware, but not exactly cheap. Aside from that, all you need is a half-decent PC (it at least needs USB-3.0 to communicate with the SDR, the “YateBTS”  software (which [dosdude1] promises to provide a setup guide for in a subsequent video) and a sim card reader. Plus some old phones, of course, which is rather the whole point of this exercise.

The 2G sunset, especially when followed by 3G, wiped out whole generations of handhelds — devices with unique industrial design and forgotten internet protocols that are worth remembering and keeping alive. By the end of the video, he has his own little network, with the phones able to call and text one another on the numbers he set up, and even (slowly) access the internet through the miniPC’s network connection.

Unlike most of the hacks we’ve featured from [dosdude1], you won’t even need a soldering iron, never mind a reflow oven for BGA. 

Continue reading “2G Gone? Bring It Back Yourself!”

Hard Hat Becomes Bluetooth Direction Finder

Have you ever wanted to find a Bluetooth device out in the wild while looking like the comic relief character from a science-fiction series? You might like Dendrite, the direction-finding hat from [SolidStat3].

Dendrite is intended for hunting down Bluetooth devices. It’s capable of direction estimation based on signal strength readings from four ESP32 microcontrollers mounted on an off-the-shelf hard hat. Each ESP32 searches for BLE devices in the immediate area and reports the apparent signal strength to a fifth ESP32, which collates readings from all units. It then runs a simple multilateration algorithm to estimate the direction of the device. This information is then displayed via a ring of addressable LEDs around the perimeter of the hat. White LEDs marking the direction of the detected device. The only problem? You can’t see the LEDs while you’re wearing the hat. You might need a friend to help you… or you can simply take it off to see what it’s doing.

Ultimately, this project is a useful direction-finding hard hat that would also make a perfect prop from an episode of Inspector Spacetime. We’ve covered direction finding in other contexts before, too. Meanwhile, if you’re cooking up your own innovative hard hat (or radio) hacks, don’t hesitate to let us know!

A Ham-Adjacent Portable Radio Repeater

Although ham radio offers a wide array of bands to transmit on, not to mention plenty of modes to communicate with, not everyone wants or needs to use all of this capability. For those needing simple two-way communication services like FRS or GMRS are available (in North America) with much less stringent licensing requirements, and GMRS even allows repeaters to be used to extend their range beyond the typical mile or so. [Dave] aka [N8DAV] has built an off-grid simplex repeater that can travel around with him wherever he goes.

The repeater itself is based on a pre-built simplex repeater module, which means that it has to record an incoming signal and then play it back on the same frequency. Compared to a split frequency repeater which uses different frequencies for transmit and receive this can be a bit cumbersome but simplifies the design and the use. A Baofeng UV-5R is used to perform the actual radio duties paired to a 40 watt amplifier to extend the range as much as possible. It’s all packed into a Pelican-like case and set up with a large battery that could power it for a number of days, making it useful for camping, rescue, or other off-grid activities.

For those wondering why [Dave] is using his ham call sign instead of his GMRS one, all of the equipment in this build will work in either the UHF ham bands or the channels reserved for GMRS with minor adjustments, so it’s perfectly possible to use the setup for one’s preferred license. And, for those in other parts of the world without GMRS there’s a similar class of radio called UHF CB which might be able to support similar builds, but be sure to check your local jurisdiction’s laws before hooking something like this up. For an even longer-range radio repeater using similar equipment we’d recommend looking to the skies.

Continue reading “A Ham-Adjacent Portable Radio Repeater”

Building Your Own DVB-S2 Receiver

Generally, a digital TV tuner is something you buy rather than something you make yourself. However, [Johann] has always been quite passionate about the various DVB transmission standards, and decided he wanted to build his own receiver just for the fun of it.

[Johann]’s build is designed to tune in DVB-S2 signals transmitted from satellites, and deliver that video content over a USB connection. When beginning his build, he noted it was difficult to find DVB reception modules for sale as off-the-shelf commercial parts. With little to nothing publicly available, he instead purchased a “Formuler F1 Plug & Play DVB-S2 HDTV Sat Tuner” and gutted it for the Cosy TS2M08-HFF11 network interface module (NIM) inside. He then paired this with a Cypress CY7C68013A USB bridge to get the data out to a PC. [Johann] then whipped up a Linux kernel driver to work with the device.

[Johann] doesn’t have hardcore data on how his receiver performs, but he reports that it “works for me.” He uses it in South Germany to tune in the Astra 19.2E signal.

We don’t talk a lot about DVB these days, since so much video content now comes to us over the Internet. However, we have still featured some nifty DVB hacks in the past. If you’re out there tinkering with your own terrestrial or satellite TV hardware, don’t hesitate to notify the tipsline!