Dwingeloo telescope with sun shining through

Dwingeloo To Venus: Report Of A Successful Bounce

Radio waves travel fast, and they can bounce, too. If you are able to operate a 25-meter dish, a transmitter, a solid software-defined radio, and an atomic clock, the answer is: yes, they can go all the way to Venus and back. On March 22, 2025, the Dwingeloo telescope in the Netherlands successfully pulled off an Earth-Venus-Earth (EVE) bounce, making them the second group of amateurs ever to do so. The full breakdown of this feat is available in their write-up here.

Bouncing signals off planets isn’t new. NASA has been at it since the 1960s – but amateur radio astronomers have far fewer toys to play with. Before Dwingeloo’s success, AMSAT-DL achieved the only known amateur EVE bounce back in 2009. This time, the Dwingeloo team transmitted a 278-second tone at 1299.5 MHz, with the round trip to Venus taking about 280 seconds. Stockert’s radio telescope in Germany also picked up the returning echo, stronger than Dwingeloo’s own, due to its more sensitive receiving setup.

Post-processing wasn’t easy either. Doppler shift corrections had to be applied, and the received signal was split into 1 Hz frequency bins. The resulting detections clocked in at 5.4 sigma for Dwingeloo alone, 8.5 sigma for Stockert’s recording, and 9.2 sigma when combining both datasets. A clear signal, loud and proud, straight from Venus’ surface.

The experiment was cut short when Dwingeloo’s transmitter started failing after four successful bounces. More complex signal modulations will have to wait for the next Venus conjunction in October 2026. Until then, you can read our previously published article on achievements of the Dwingeloo telescope.

RTL-SDR With Only A Browser

Surely by now you’ve at least heard of RTL-SDR — a software project that let’s cheap TV tuner dongles work as a software-defined radios. A number of projects and tools have spun off the original effort, but in his latest video, [Tech Minds] shows off a particularly unique take. It’s a Web browser-based radio application that uses WebUSB, so it doesn’t require the installation of any application software. You can see the program operating in the video below.

There are a few things you should know. First, you need the correct USB drivers for your RTL-SDR. Second, your browser must support WebUSB, of course. Practically, that means you need a Chromium-type browser. You may have to configure your system to allow raw access to the USB port, too.

Watching the video, you can see that it works quite well. According to the comments, it will work with a phone, too, which is an interesting idea. The actual Web application is available as open source. It isn’t going to compete with a full-fledged SDR program, but it looked surprisingly complete.

These devices have grown from a curiosity to a major part of radio hacking over the years. Firefox users can’t use WebUSB — well, not directly, anyway.

Continue reading “RTL-SDR With Only A Browser”

Writing A GPS Receiver From Scratch

GPS is an incredible piece of modern technology. Not only does it allow for locating objects precisely anywhere on the planet, but it also enables the turn-by-turn directions we take for granted these days — all without needing anything more than a radio receiver and some software to decode the signals constantly being sent down from space. [Chris] took that last bit bit as somewhat of a challenge and set off to write a software-defined GPS receiver from the ground up.

As GPS started as a military technology, the level of precision needed for things like turn-by-turn navigation wasn’t always available to civilians. The “coarse” positioning is only capable of accuracy within a few hundred meters so this legacy capability is the first thing that [Chris] tackles here. It is pretty fast, though, with the system able to resolve a location in 24 seconds from cold start and then displaying its information in a browser window. Everything in this build is done in Python as well, meaning that it’s a great starting point for investigating how GPS works and for building other projects from there.

The other thing that makes this project accessible is that the only other hardware needed besides a computer that runs Python is an RTL-SDR dongle. These inexpensive TV dongles ushered in a software-defined radio revolution about a decade ago when it was found that they could receive a wide array of radio signals beyond just TV.

A Hacker’s Approach To All Things Antenna

When your homebrew Yagi antenna only sort-of works, or when your WiFi cantenna seems moody on rainy days, we can assure you: it is not only you. You can stop doubting yourself once and for all after you’ve watched the Tech 101: Antennas webinar by [Dr. Jonathan Chisum].

[Jonathan] breaks it all down in a way that makes you want to rip out your old antenna and start fresh. It goes further than textbook theory; it’s the kind of knowledge defense techs use for real electronic warfare. And since it’s out there in bite-sized chunks, we hackers can easily put it to good use.

The key takeaway is that antenna size matters. Basically, it’s all about wavelength, and [Jonathan] hammers home how tuning antenna dimensions to your target frequency makes or breaks your signal. Whether you’re into omnis (for example, for 360-degree drone control) or laser-focused directional antennas for secret backyard links, this is juicy stuff.

If you’re serious about getting into RF hacking, watch this webinar. Then dig up that Yagi build, and be sure to send us your best antenna hacks.

Continue reading “A Hacker’s Approach To All Things Antenna”

Meshtastic Adds Wireless Connectivity To Possum Trap

Perhaps every gardener to attempt to grow a tomato, lettuce, or bean has had to contend with animals trying to enjoy the food before the gardener themselves can, whether it’s a groundhog, rabbit, mouse, crow, or even iguana. There are numerous ways to discourage these mischievous animals from foraging the garden beds including traps, but these devices have their downsides as well. False alarms can be a problem as well as trapping animals that will be overly aggravated to be inside the trap (like skunks) and while the latter problem can’t easily be solved by technology, the former can with the help of Meshtastic.

[Norman Jester]’s problem was an errant possum, but these nocturnal animals generally come out while humans are asleep, and other nighttime animals like rats can activate the trap and then escape. To help with this, a Meshtastic node was added to the San Diego mesh using a 3.5mm audio jack as a detector. When the trap is activated, the closing door yanks a plug out of the jack, alerting the node that the trap has been closed. If it’s a false alarm the trap can be easily and quickly reset, and if a possum has found its way in then it can be transported to a more suitable home the next day.

It’s worth noting that American possums (distinct from the Australian animals of the same name) are an often-misunderstood animal that generally do more good than harm. They help to control Lyme disease, eat a lot of waste that other animals won’t, don’t spread rabies, and don’t cause nearly as much disruption to human life as other animals like feral cats or raccoons. But if one is upsetting a garden or another type of animal is causing a disturbance, this Meshtastic solution does help solve some of the problems with live traps. For smaller animals, though, take a look at this Arudino-powered trap instead.

Thanks to [Dadsrcworkbench] for the tip!

Continue reading “Meshtastic Adds Wireless Connectivity To Possum Trap”

Newspaper clipping with words 'speaking personally' and a photo

A Fast Rewind To The Era Of Tapesponding

Imagine a time before Discord servers and cheap long-distance calls. Back in the 1950s, a curious and crafty group of enthusiasts invented their own global social network: on reels of magnetic tape. They called it tapesponding (short for tape corresponding), and it was a booming hobby for thousands of radio hams, tinkerers, and audio geeks. Here’s the original video on this analog marvel.

These folks weren’t just swapping mixtapes. They crafted personal audio letters, beamed across the globe on 3-inch reels. DIY clubs emerged everywhere: World Tape Pals (Texas-based, naturally) clocked 5,000 members from “every Free Nation” – which frames it in a world in terms of East vs. West. Some groups even pooled funds to buy shared tape decks in poorer regions – pure hacker spirit. The tech behind it: Speeds of 3¾ IPS, half-track mono, round-robin reels, and rigorous trust networks to avoid ghosters. Honestly, it makes IRC net ops look soft. Tapesponding wasn’t just for chatty types. It fostered deep friendships, even marriages. It was social engineering before that term was coined. The video is below the break.

What are your thoughts on this nostalgic way of long-distance communication? The warm whirring of a spinning tape reel? The waiting time before your echo is returned? Or are have you skipped all the analog mechanics and shouted out into the LoRaWAN void long ago?

Continue reading “A Fast Rewind To The Era Of Tapesponding”

Red and gold bakelite Philco farm radio on a workbench

Hacking A Heavyweight Philco Radio

There’s something magical about the clunk of a heavy 1950s portable radio – the solid thunk of Bakelite, the warm hum of tubes glowing to life. This is exactly why [Ken’s Lab] took on the restoration of a Philco 52-664, a portable AC/DC radio originally sold for $45 in 1953 (a small fortune back then!). Despite its beat-up exterior and faulty guts, [Ken] methodically restored it to working condition. His video details every crackling capacitor and crusty resistor he replaced, and it’s pure catnip for any hacker with a soft spot for analog tech. Does the name Philco ring a bell? Lately, we did cover the restoration of a 1958 Philco Predicta television.

What sets this radio hack apart? To begin with, [Ken] kept the restoration authentic, repurposing original capacitor cans and using era-appropriate materials – right down to boiling out old electrolytics in his wife’s discarded cooking pot. But, he went further. Lacking the space for modern components, [Ken] fabbed up a custom mounting solution from stiff styrofoam, fibreboard, and all-purpose glue. He even re-routed the B-wiring with creative terminal hacks. It’s a masterclass in patience, precision, and resourcefulness.

If this tickles your inner tinkerer, don’t miss out on the full video. It’s like stepping into a time machine.

Continue reading “Hacking A Heavyweight Philco Radio”