Repairing A Legendary Elka Synthex Analog Synthesizer

Handy diagnostic LEDs on the side of the tone generator boards. (Credit: Mend it Mark, YouTube)

Somehow, an Elka Synthex analog synthesizer made it onto [Mend it Mark]’s repair bench recently. It had a couple of dud buttons, and some keys produced the wrong tone. Remember, this is an analog synthesizer from the 1980s, so we’re talking basic 74LS chips and kin. Fortunately, Elka helped him with the complete repair manual, including schematics.

As usual, [Mark] starts by diagnosing the faults, using the schematics to mark the parts of the circuitry to focus on. Then, the synth’s bonnet is popped open to reveal its absolutely gobsmackingly delightful inner workings, with neatly modular PCBs attached to a central backplane. The entire unit is controlled by a 6502 MPU, with basic counter ICs handling tone generation, controlled by top panel settings.

The Elka Synthex is a polyphonic analog synthesizer produced from 1981 to 1985 and used by famous artists, including Jean-Michel Jarre. Due to its modular nature, [Mark] was quickly able to hunt down the few defective 74LS chips and replace them before testing the instrument by playing some synth tunes from Jean-Michel Jarre’s Oxygène album, as is proper with a 1980s synthesizer.

Looking for something simpler? Or, perhaps, you want something not quite that simple.

Continue reading “Repairing A Legendary Elka Synthex Analog Synthesizer”

Tiny Laptop Gets A New Case And An Unlocking

Unless you’ve got an especially small lap, calling the Toshiba Libretto a laptop is a bit of a stretch. The diminutive computers from the mid-1990s had a lot of the usual laptop features, but in an especially compact and portable case that made them a great choice for anyone with an on-the-go lifestyle.

Fast-forward thirty years or so, and the remaining Librettos haven’t fared too well. Many of them have cases that crumble at the slightest touch, which is what led [polymatt] to undertake this meticulous case replacement. The effort started with a complete teardown; luckily, the lower aluminum-alloy shell was in fine shape, but the upper case parts were found to be almost too deteriorated to handle. Still, with a little patience and the judicious application of tape, [polymatt] was able to scan the case pieces on a flatbed scanner and import them into his CAD package. Great tip on the blue-tack for leveling the parts for accurate scanning, by the way.

After multiple rounds of printing and tweaking, [polymatt] had a case good enough to reassemble the Libretto. Unfortunately, the previous owner left an unwanted gift: a BIOS password. Disconnecting the CMOS battery didn’t reset it, but a little research told him that shorting a few pins on the parallel port on the machine’s dock should do the trick. It was a bit involved, requiring the design and subsequent bodging of a PCB to fit into the docking port connector, but in the end he was able to wake up a machine to all its Windows 95 glory. Better get patching.

In a time when laptops were more like lap-crushers, the Libretto was an amazing little machine, and thirty years on, they’re well worth saving from the scrap heap. Hats off to [polymatt] for the effort to save this beauty, and if he needs tips on reading data from any PCMCIA cards that may have come with it, we’ve got him covered.

Continue reading “Tiny Laptop Gets A New Case And An Unlocking”

Repairing A 1955 Classic Radio

We used to say that fixing something was easier than bringing up a design for the first time. After all, the thing you are fixing, presumably, worked at one time or another. These days, that’s not always true as fixing modern gear can be quite a challenge. Watching [Ken’s] repair of an old 1955 Silvertone radio reminded us of a simpler time. You can watch the action on the video below.

If you’ve never had the pleasure of working on an AM radio, you should definitely try it. Some people would use an amplifier to find where the signal dies out. Others will inject a signal into the radio to find where it stops. A good strategy is to start at the volume control and decide if it is before or after that. Then split the apparently bad section roughly in half and test that portion—sort of a hardware binary search. Of course, your first step should probably be to verify power, but after that, the hunt is on.

Continue reading “Repairing A 1955 Classic Radio”

Plastic Gear Repair

We’ve seen several methods of repairing plastic gears. After all, a gear is usually the same all the way around, so it is very tempting to duplicate a good part to replace a damaged part. That’s exactly what [repairman 101] does in the video below. He uses hot glue to form a temporary mold and casts a resin replacement in place with a part of a common staple as a metal reinforcement.

The process starts with using a hobby tool to remove even more of the damaged gear, making a V-shaped slot to accept the repair. The next step is to create a mold. To do that, he takes a piece of plastic and uses hot glue to secure it near a good part of the gear. Then, he fills the area with more hot glue and carefully removes it.

Continue reading “Plastic Gear Repair”

Interposer Helps GPS Receiver Overcome Its Age

We return to [Tom Verbeure] hacking on Symmetricom GPS receivers. This time, the problem’s more complicated, but the solution remains the same – hardware hacking. If you recall, the previous frontier was active antenna voltage compatibility – now, it’s rollover. See, the GPS receiver chip has its internal rollover date set to 18th of September 2022. We’ve passed this date a while back, but the receiver’s firmware isn’t new enough to know how to handle this. What to do? Build an interposer, of course.

You can bring the module up to date by sending some extra init commands to the GPS chipset during bootup, and, firmware hacking just wasn’t the route. An RP2040 board, a custom PCB, a few semi-bespoke connectors, and a few zero-ohm resistors was all it took to make this work. From there, a MITM firmware wakes up, sends the extra commands during power-on, and passes all the other traffic right through – the system suspects nothing.

Everything is open-source, as we could expect. The problem’s been solved, and, as a bonus, this implant gives a workaround path for any future bugs we might encounter as far as GPS chipset-to-receiver comms are concerned. Now, the revived S200 serves [Tom] in his hacking journeys, and we’re reminded that interposers remain a viable way to work around firmware bugs. Also, if the firmware (or the CPU) is way too old to work with, an interposer is a great first step to removing it out of the equation completely.

A stainless steel metal toaster sits on a white table. Its cord is draped artfully around to the front and the leftmost toast holding apparatus is rotated out from the front of the device like a book pulled down and out from a bookshelf.

Flat Pack Toaster Heats Up The Right To Repair

The toaster is a somewhat modest appliance that is often ignored until it stops working. Many cheap examples are not made to be easily repaired, but [Kasey Hou] designed a repairable flat pack toaster.

[Hou] originally planned to design a repairable toaster to help people more easily form an emotional attachment with the device, but found the process of disassembly for existing toasters to be so painful that she wanted to go a step further. By inviting the toaster owner into the process of assembling the appliance, [Hou] reasoned people would be less likely to throw it out as well as more confident to repair it since they’d already seen its inner workings.

Under the time constraints of the project, the final toaster has a simpler mechanism for ejecting toast than most commercial models, but still manages to get the job done. It even passed the UK Portable Appliance Test! I’m not sure if she’d read the IKEA Effect before running this project, but her results with user testing also proved that people were more comfortable working on the toaster after assembling it.

It turns out that Wikipedia couldn’t tell you who invented the toaster for a while, and if you have an expensive toaster, it might still be a pain to repair.

Close up of Zenit 19 camera

Behind The Lens: Tearing Down A Rare Soviet Zenit 19

If you’re into Soviet-era gear with a techy twist, you’ll love this teardown of a rare Zenit 19 camera courtesy of [msylvain59]. Found broken on eBay (for a steal!), this 1982 made-in-USSR single-lens reflex camera isn’t the average Zenit. It features, for example, electronically controlled shutter timing – quite the upgrade from its manual siblings.

The not-so-minor issue that made this Zenit 19 come for cheap was a missing shutter blade. You’d say – one blade gone rogue! Is it lost in the camera’s guts, or snapped clean off? Add to that some oxidized battery contacts and a cracked viewfinder, and you’ve got proper fixer-upper material. But that’s where it gets intriguing: the camera houses a rare hybrid electronic module (PAPO 074), complete with epoxy-covered resistors. The shutter speed dial directly adjusts a set of resistors, sending precise signals to the shutter assembly: a neat blend of old-school mechanics and early electronics.

Now will it shutter, or stutter? With its vertical metal shutter – uncommon in Zenits – and separate light metering circuitry, this teardown offers a rare glimpse into Soviet engineering flair. Hungry for more? We’ve covered a Soviet-era computer and a radio in the past. If you’re more into analog camera teardowns, you might like this analog Pi upgrade attempt, or this bare minimum analog camera project.

Continue reading “Behind The Lens: Tearing Down A Rare Soviet Zenit 19”