Remote controlled Billy from the Saw movies

Pi-Controlled Billy From The Saw Horror Flicks

[David0429] has made a very scary Raspberry Pi controlled puppet. Scary that is if you’ve seen the Saw movies where a serial killer uses one like it, called Billy, to communicate with his victims. If you haven’t, then it’s a pretty neat remote-controlled puppet-on-a-tricycle hack.

A stepper motor hidden under the front fender moves the trike by rotating the front wheel. It does this using a small 3D printed wheel that’s attached to the motor’s shaft and that presses against the trike’s wheel. Steering is done using a 3D printed gear mounted above the fender and attached to the steering column. That gear is turned by a servo motor through another gear. And another servo motor in the puppet’s head moves its mouth up and down.

All these servos and motors are wired to an Adafruit stepper motor HAT stacked on a Raspberry Pi hidden under the seat. Remote control is done from a webpage in any browser. The Flask python web framework runs on the Pi to both serve up the webpage and communicate with it in order to receive commands.

[David0429] took great care to make the puppet and tricycle look like the one in the movie. Besides cutting away excess parts of the trike and painting it, he also ran all the wires inside the tubular frame, drilling and grinding out holes where needed.  The puppet’s skeleton is made of wood, zip ties and hinges but with the clothes on, it’s pretty convincing. Interestingly, the puppet in the first movie was constructed with less sophistication, having been made out of paper towel rolls and papier-mâché. The only things [david0429] would like to do for next time are to quieten the motors for maximum creepiness, and to make it drive faster. However, the need for a drive system that could be hidden under the fender resulted one that could only work going slowly. We’re thinking maybe driving it using the rear wheels may make it possible provide both speed and stealth. Ideas anyone?

In any case, as you can see in the video below, the result is suitably creepy.

Continue reading “Pi-Controlled Billy From The Saw Horror Flicks”

Hackaday Prize Entry: Two Leg Robot

If you’re working on your own bipedal robot, you don’t have to start from the ground up anymore. [Ted Huntington]’s Two Leg Robot project aims to be an Open Source platform that’ll give any future humanoid-robot builders a leg up.

While we’ve seen quite a few small two-legged walkers, making a pair of legs for something human-sized is a totally different endeavor. [Ted]’s legs are chock-full of sensors, and there’s a lot of software that processes all of the data. That’s full kinematics and sensor info going back and forth from 3D model to hardware. Very cool. And to top it all off, “Two Leg” uses affordable motors and gearing. This is a full-sized bipedal robot platform that you might someday be to afford!

Will walking robots really change the world? Maybe. Will easily available designs for an affordable bipedal platform give hackers of the future a good base to stand on? We hope so! And that’s why this is a great entry for the Hackaday Prize.

About That Giant Robot Battle Last Night

Two years ago we wrote about a giant robot battle between the USA and Japan. After two years in the making, MegaBots (team USA) and Suidobashi (team Japan) were finally ready for the first giant robot fight. If you are into battle bots, you probably did not miss the fight that happened around 7:00 pm PST. If you missed it, you can watch the whole thing here.

There were two duels. First it was Iron Glory (MkII) vs. Kuratas, and after that it was Eagle Prime (MkIII) vs. Kuratas.

Be warned, spoilers ahead.

Continue reading “About That Giant Robot Battle Last Night”

LEGO Row Boat Is The Poolside Companion You Didn’t Know You Needed

Maybe it’s the upbeat music, or the views of a placid lake at sunset, or perhaps it’s just seeing those little plastic rods pumping away with all their might. Whatever the reason may be, the video [Vimal Patel] posted of his little remote controlled LEGO row boat cruising around on the open water is sure to put a smile on the face of even the most jaded hacker.

[Vimal] tells us that his creation is made up of over 140 unmodified LEGO parts, and is controlled over Bluetooth which connects to an app on his phone. While we would like to see some more detail on the reciprocating module he came up with to drive the boat’s paddles, we have to admit that the images he provided in his flickr album for the project are impeccable overall. If the toy boat game doesn’t work out for [Vimal], we think he definitely has what it takes to get into the advertising department for a car manufacturer.

[Vimal] was even kind enough to provide a LEGO Digital Designer file for the project, which in the world of little rainbow colored blocks is akin to releasing the source code, so you can build up your own fleet before next summer.

It’s worth noting that [Vimal] is something of a virtuoso in the world of modular building blocks, and no stranger here at Hackaday. His self lacing shoe impressed earlier this year, and this isn’t even his first LEGO watercraft.

All he has to do now to reach the true pinnacle of LEGO construction is to start building with giant versions of everyone’s favorite block.

Continue reading “LEGO Row Boat Is The Poolside Companion You Didn’t Know You Needed”

CNC Robot Makes A Move

Another day, another Kickstarter. While we aren’t often keen on touting products, we are keen on seeing robotics and unusual mechanisms put to use. The Goliath CNC has long since surpassed its $90,000 goal in an effort to put routing robots in workshops everywhere.

Due to their cost and complexity, you often only find omni-wheels on robots scurrying around universities or the benches of robotics hobbyists, but the Goliath makes use of nine wheels configured as three sets in a triangular pattern. This is important as any CNC needs to make compound paths, and for wheeled robots an omni-wheel base is often the best bet for compound 2D translation.

coordinate drawingWhat really caught our eye is the Goliath’s unique positioning system. While most CNC machines have the luxury of end-stops or servomotors capable of precise positional control, the Goliath has two “base sensors” that are tethered to the top of the machine and mounted to the edge of the workpiece. Each sensor connects to the host computer via USB and uses vaguely termed “Radio Frequency technology” that provides a 100Hz update for the machine’s coordinate system. This setup is sure to beat out dead-reckoning for positional awareness, but details are scant on how it precisely operates. We’d love to know more if you’ve used a similar setup for local positioning as this is still a daunting task for indoor robots.

A re-skinned DeWalt 611 router makes for the core of the robot, which is a common option for many a desktop milling machine and other bizarre, mobile CNCs like the Shaper Origin. While we’re certain that traditional computer controlled routers and proper machining centers are here to stay, we certainly wouldn’t mind if the future of digital manufacturing had a few more compact options like these.

Soon You’ll Sit Inside A Robot’s Head At Work

MIT’s Computer Science and Artificial Intelligence Lab, CSAIL, has created a process of teleoperating a Baxter humanoid robot with an Oculus Rift VR headset. This project is partially aimed towards making manufacturing jobs a hell of a lot of fun telecommutable. It could even be a way to supervise robot workers from a distance.

In a nutshell, the user controls the robot remotely in a virtual reality environment. The user does this specifically in a VR environment modeled like a control room with multiple sensor displays, making it feel like they are sitting inside the robot’s head. By using hand controllers, users can match their movements to the robot’s to complete various tasks. If you’ve seen Pacific Rim, you are probably envisioning a Jaegar right about now — minus the psychic linking.

Continue reading “Soon You’ll Sit Inside A Robot’s Head At Work”

Our Reactions To The Treatment Of Robots

Most of us have seen employees of Boston Dynamics kicking their robots, and many of us instinctively react with horror. More recently I’ve watched my own robots being petted, applauded for their achievements, and yes, even kicked.

Why do people react the way they do when mechanical creations are treated as if they were people, pets, or worse? There are some very interesting things to learn about ourselves when considering the treatment of robots as subhuman. But it’s equally interesting to consider the ramifications of treating them as human.

The Boston Dynamics Syndrome

Shown here are two snapshots of Boston Dynamics robots taken from their videos about Spot and Atlas. Why do scenes like this create the empathic reactions they do? Two possible reasons come to mind. One is that the we anthropomorphize the human-shaped one, meaning we think of it as human. That’s easy to do since not only is it human-shaped but the video shows it carrying a box using human-like movements. The second snapshot perhaps evokes the strongest reactions in anyone who owns a dog, though its similarity to any four-legged animal will usually do.

Is it wrong for Boston Dynamics, or anyone else, to treat robots in this way? Being an electronic and mechanical wizard, you might have an emotional reaction and then catch yourself with the reminder that these machines aren’t conscious and don’t feel emotional pain. But it may be wrong for one very good reason.

Continue reading “Our Reactions To The Treatment Of Robots”