Exploring The Physics Behind Cooling Towers

A characteristic of any thermal power plant — whether using coal, gas or spicy nuclear rocks — is that they have a closed steam loop with a condenser section in which the post-turbine steam is re-condensed into water. This water is then led back to the steam generator in the plant. There are many ways to cool the steam in the condenser, including directly drawing in cooling water from a nearby body of water. The most common and more efficient way is to use a cooling tower, with a recent video by [Practical Engineering] explaining the physics behind these.

For the demonstration, a miniature natural draft tower is constructed in the garage from sheets of acrylic. This managed to cool 50 °C water down to 20 °C by merely spraying the hot water onto a mesh that maximizes surface area. The resulting counter-flow means that no fan or the like is needed, and the hyperboloid shape of the cooling tower makes it incredibly strong despite having relatively thin walls.

The use of a natural draft tower makes mostly sense in cooler climates, while in hotter climates having a big cooling lake may make more sense. We covered the various ways to cool thermal plants before, including direct intake, spray ponds, cooling towers and water-free cooling solutions, with the latter becoming a feature of new high-temperature fission reactor designs.

Continue reading “Exploring The Physics Behind Cooling Towers”

Ramsey Numbers And The Appearance Of Order In Random Numbers

Proof without words of the two-color case of Ramsey's theorem. (Credit: CMG Lee, Wikimedia)
Proof without words of the two-color case of Ramsey’s theorem. (Credit: CMG Lee, Wikimedia)

Generally when assuming a chaotic (i.e. random) system like an undirected graph, we assume that if we start coloring these (i.e. assign values) with two colors no real pattern emerges. Yet it’s been proven that if you have a graph with a certain set of vertices, coloring the resulting lines in this manner will always result in a clique forming. This phenomenon has been investigated for nearly a century now after its discovery by British mathematician [Frank P. Ramsey].

The initial discovery concerned a graph with 6 vertices, providing the lowest number of vertices required. Formally this is written as R(3, 3), with subsequent cases of these Ramsey numbers discovered. They are part of Ramsey theory, which concerns itself with the question of what the underlying properties are that cause this apparent order to appear, which requires us to discover more cases.

Finding the number for a particular instance of R(m, n) can be done the traditional way, or brute-forcing it computationally. Over the decades more advanced algorithms have been developed to help with the search, and people from different fields are mingling as they are drawn to this problem. So far the pay-off of this search are these algorithms, the friendships created and perhaps one day a deep insight in the causes behind this phenomenon that may have implications for physics, chemistry and other fields.

Flirting With Kessler: Why Space Debris Physics Make It Such An Orbital Pain

Picture in your mind a big parking lot with 131 million cars on it. Now imagine that they are spread out over the entire Earth’s inhabited areas. Although still a large number, it is absolutely dwarfed by the approximately 1.47 billion cars registered and in use today, with room to spare for houses, parks and much more. The 131 million represents the total number of known and estimated space debris objects in Earth orbit sized 1 mm and up, as per the European Space Agency. This comes on top of the approximately 13,200 satellites still in Earth orbit of which 10,200 are still functional.

Now imagine that most of these 131 million cars of earlier are sized 10 cm or smaller. Spaced out across the Earth’s entire surface you’d not be able to see more than at most one. Above the Earth’s surface there are many orbital planes and no pesky oceans to prevent millimeter and centimeter-sized cars from being spaced out there. This gives a rough idea of just how incredibly empty Earth’s orbital planes are and why from the International Space Station you rarely notice any such space debris until a small bit slams into a solar panel or something equally not amusing.

Cleaning up space debris seems rather unnecessary in this perspective, except that even the tiniest chunk travels at orbital velocities of multiple kilometers per second with kinetic energy to spare. Hence your task: to chase down sub-10 cm debris in hundreds of kilometers of mostly empty orbital planes as it zips along with destructive intent. Surely this cannot be so difficult with lasers on the ISS or something?

Continue reading “Flirting With Kessler: Why Space Debris Physics Make It Such An Orbital Pain”

An exploded view of an electrostatic motor from manufacturer C-Motive. There is a silvery cylinder on the left, two half silver and half golden disks on either side and two thinner gold disks in the center. A square mountin plate is on the right hand side next to one of the silver/gold disks.

Electrostatic Motors Are Making A Comeback

Electrostatic motors are now common in MEMS applications, but researchers at the University of Wisconsin and spinoff C-Motive Technologies have brought macroscale electrostatic motors back. [via MSN/WSJ]

While the first real application of an electric motor was Ben Franklin’s electrostatically-driven turkey rotisserie, electromagnetic type motors largely supplanted the technology due to the types of materials available to engineers of the time. Newer dielectric fluids and power electronics now allow electrostatic motors to be better at some applications than their electromagnetic peers.

The main advantage of electrostatic motors is their reduced critical materials use. In particular, electrostatic motors don’t require copper windings or any rare earth magnets which are getting more expensive as demand grows for electrically-powered machines. C-Motive is initially targeting direct drive industrial applications, and the “voltage driven nature of an electrostatic machine” means they require less cooling than an electromagnetic motor. They also don’t use much if any power when stalled.

Would you like a refresher on how to make static electricity or a deeper dive on how these motors work?

How Pollution Controls For Cargo Ships Made Global Warming Worse

In 2020 international shipping saw itself faced with new fuel regulations for cargo ships pertaining to low sulfur fuels (IMO2020). This reduced the emission of sulfur dioxide aerosols from these ships across the globe by about 80% practically overnight and resulting in perhaps the biggest unintentional geoengineering event since last century.

As detailed in a recent paper by [Tianle Yuan] et al. as published in Nature, by removing these aerosols from the Earth’s atmosphere, it also removed their cooling effect. Effectively this change seems to have both demonstrated the effect of solar engineering, as well as sped up the greenhouse effect through radiative forcing of around 0.2 Watt/m2 of the global ocean.

The inadvertent effect of the pollution by these cargo ships appears to have been what is called marine cloud brightening (MCB), with the increased reflectivity of said clouds diminishing rapidly as these pollution controls came into effect. This was studied by the researchers using a combination of satellite observations and a chemical transport model, with the North Atlantic, the Caribbeans and South China Sea as the busiest shipping channels primarily affected.

Although the lesson one could draw from this is that we should put more ships on the oceans burning high-sulfur fuels, perhaps the better lesson is that MCB is a viable method to counteract global warming, assuming we can find a method to achieve it that doesn’t also increase acid rain and similar negative effects from pollution.

Featured image: Time series of global temperature anomaly since 1980. (Credit: Tianle Yuan et al., Nature Communications Earth Environment, 2024)

‘Upgrading’ A Microwave Oven To 20 KW

Whilst microwave plasmas are nothing new around here, we were curious to see what happens at 20x the power, and since YouTuber [Styropyro] had put out a new video, we couldn’t resist seeing where this was going. Clearly, as your bog standard microwave oven can only handle at most one kilowatt; the ‘oven’ needed a bit of an upgrade.

A 16 kW water-cooled magnetron. Why not over-drive it to 20 kW for fun?

Getting hold of bigger magnetrons is tricky, but as luck — or perhaps fate — would have it, a 16 kW, water-cooled beast became available on eBay thanks to a tip from a Discord user. It was odd but perhaps not surprising that this Hitatch H0915 magnetron was being sold as a ‘heat exchanger.’

[Styropyro] doesn’t go into much detail on how to supply the anode with its specified 16 kW at 9.5 kVDC, but the usual sketchy (well down-right terrifying) transformers in the background indicate that he had just what was needed kicking around the ‘shop. Obviously, since this is a [Styropyro] video, these sorts of practical things have been discussed before, so there is no need to waste precious time and get right on to blowing stuff up!

Some classic microwave tricks are shown, like boiling water in five seconds, cooking pickles (they really do scream at 20 kW) and the grape-induced plasma-in-a-jar. It was quite clear that at this power level, containing that angry-looking plasma was quite a challenge. If it was permitted to leak out for only a few seconds, it destroyed the mica waveguide cover and risked coupling into the magnetron and frying it. Many experiments followed, a lot of which seemed to involve the production of toxic brown-colored nitrogen dioxide fumes. It was definitely good to see him wearing a respirator for this reason alone!

Is it purple or is it indigo? Beauty is in the eye of the beholder!

The main star of the demonstration was the plasma-induced emissions of various metal elements, with the rare indigo and violet colors making an appearance once the right blend of materials was introduced into the glassware. Talking of glassware, we reckon he got through a whole kitchen’s worth. We lost count of the number of exploded beakers and smashed plates. Anyway, plasma science is fun science, but obviously, please don’t try any of this at home!

For those who didn’t take an ‘electron devices’ course at college, here’s a quick guide to how magnetrons work. Plasma physics is weird; here’s how the plasma grape experiment works. Finally, this old hack is a truly terrible idea. Really don’t do this.

Continue reading “‘Upgrading’ A Microwave Oven To 20 KW”

Using An OLED Display’s Light For Embedded Sensors

These days displays are increasingly expected to be bidirectional devices, accepting not only touch inputs, but also to integrate fingerprint sensing and even somehow combine a camera with a display without punching a hole through said display. Used primarily on smartphone displays, these attempts have been met with varying degrees of success. But a paper published in the Communications Engineering journal describes a version which combines an OLED with photosensors in the same structure — a design that may provide a way to make such features much more effective.

The article by [Chul Kim] and colleagues of the Samsung Display Research Center in South Korea the construction of these bidirectional OLED displays is described, featuring the standard OLED pixels as well as an organic photodiode (OPD) placed side-by-side. Focusing on the OLED’s green light for its absorption characteristics with the human skin, the researchers were able to use the produced OLED/OPD hybrid display for fingerprint recognition, as well as a range of cardiovascular markers, including heart rate, blood pressure, etc.

The basic principle behind these measurements involves photoplethysmography, which is commonly used in commercially available pulse oximeters. Before these hybrid displays can make their way into commercial devices, there are still a few technical challenges to deal with, in particular electrical and optical leakage. The sample demonstrated appears to work well in this regard, but the proof is always in the transition from the lab to mass-production. We have to admit that it would be rather cool to have a display that can also handle touch, fingerprints and record PPG data without any special layers or sensor chips.