A circuit board is shown on a white background. It has a USB-A port on the front side, and a coiled wire antenna extending from another circuit board mounted above the first one.

A Remote-Controlled USB Rubber Ducky Clone

Despite the repeated warnings of system administrators, IT personnel, and anyone moderately aware of operational security, there are still quite a few people who will gladly plug a mysterious flash drive into their computers to see what’s on it. Devices which take advantage of this well-known behavioral vulnerability have a long history, the most famous of which is Hak5’s USB Rubber Ducky. That emulates a USB input device to rapidly execute attacker-defined commands on the target computer.

The main disadvantage of these keystroke injection attacks, from the attacker’s point of view, is that they’re not particularly subtle. It’s usually fairly obvious when something starts typing thousands of words per minute on your computer, and the victim’s next move is probably a call to IT. This is where [Krzysztof Witek]’s open-source Rubber Ducky clone has an advantage: it uses a signal detected by a SYN480R1 RF receiver to trigger the deployment of its payload. This does require the penetration tester who uses this to be on the site of the attack, but unlike with an always-on or timer-delayed Rubber Ducky, the attacker can trigger the payload when the victim is distracted or away from the computer.

This project is based around the ATmega16U2, and runs a firmware based on microdevt, a C framework for embedded development which [Krzysztof] also wrote. The project includes a custom compiler for a reduced form of Hak5’s payload programming language, so at least some of the available DuckyScript programs should be compatible with this. All of the project’s files are available on GitHub.

Perhaps due to the simplicity of the underlying concept, we’ve seen a few open source implementations of malicious input devices. One was even built into a USB cable.

Simple Open Source Photobioreactor

[Bhuvanmakes] says that he has the simplest open source photobioreactor. Is it? Since it is the only photobioreactor we are aware of, we’ll assume that it is. According to the post, other designs are either difficult to recreate since they require PC boards, sensors, and significant coding.

This project uses no microcontroller, so it has no coding. It also has no sensors. The device is essentially an acrylic tube with an air pump and some LEDs.

Continue reading “Simple Open Source Photobioreactor”

The green CRT display of a scanning-electron microscope is shown, displaying small particles.

DIY Calibration Target For Electron Microscopes

It’s a problem that few of us will ever face, but if you ever have to calibrate your scanning electron microscope, you’ll need a resolution target with a high contrast under an electron beam. This requires an extremely small pattern of alternating high and low-density materials, which [ProjectsInFlight] created in his latest video by depositing gold nanoparticles on a silicon slide.

[ProjectsInFlight]’s scanning electron microscope came from a lab that discarded it as nonfunctional, and as we’ve seen before, he’s since been getting it back into working condition. When it was new, it could magnify 200,000 times and resolve features of 5.5 nm, and a resolution target with a range of feature sizes would indicate how high a magnification the microscope could still reach. [ProjectsInFlight] could also use the target to make before-and-after comparisons for his repairs, and to properly adjust the electron beam.

Since it’s easy to get very flat silicon wafers, [ProjectsInFlight] settled on these as the low-density portion of the target, and deposited a range of sizes of gold nanoparticles onto them as the high-density portion. To make the nanoparticles, he started by dissolving a small sample of gold in aqua regia to make chloroauric acid, then reduced this back to gold nanoparticles using sodium citrate. This gave particles in the 50-100 nanometer range, but [ProjectsInFlight] also needed some larger particles. This proved troublesome for a while, until he learned that he needed to cool the reaction temperature solution to near freezing before making the nanoparticles.

Using these particles, [ProjectsInFlight] was able to tune the astigmatism settings on the microscope’s electron beam so that it could clearly resolve the larger particles, and just barely see the smaller particles – quite an achievement considering that they’re under 100 nanometers across!

Electron microscopes are still a pretty rare build, but not unheard-of. If you ever find one that’s broken, it could be a worthwhile investment.

Continue reading “DIY Calibration Target For Electron Microscopes”

Bipolar Uranium Extraction From Seawater With Ultra-Low Cell Voltage

As common as uranium is in the ground around us, the world’s oceans contain a thousand times more uranium (~4.5 billion tons) than can be mined today. This makes extracting uranium as well as other resources from seawater a very interesting proposition, albeit it one that requires finding a technological solution to not only filter out these highly diluted substances, but also do so in a way that’s economically viable. Now it seems that Chinese researchers have recently come tantalizingly close to achieving this goal.

The anode chemical reaction to extract uranium. (Credit: Wang et al., Nature Sustainability, 2025)
The anode chemical reaction to extract uranium. (Credit: Wang et al., Nature Sustainability, 2025)

The used electrochemical method is described in the paper (gift link) by [Yanjing Wang] et al., as published in Nature Sustainability. The claimed recovery cost of up to 100% of the uranium in the seawater is approximately $83/kilogram, which would be much cheaper than previous methods and is within striking distance of current uranium spot prices at about $70 – 85.

Of course, the challenge is to scale up this lab-sized prototype into something more industrial-sized. What’s interesting about this low-voltage method is that the conversion of uranium oxide ions to solid uranium oxides occurs at both the anode and cathode unlike with previous electrochemical methods. The copper anode becomes part of the electrochemical process, with UO2 deposited on the cathode and U3O8 on the anode.

Among the reported performance statistics of this prototype are the ability to extract UO22+ ions from an NaCl solution at concentrations ranging from 1 – 50 ppm. At 20 ppm and in the presence of Cl ions (as is typical in seawater), the extraction rate was about 100%, compared to ~9.1% for the adsorption method. All of this required only a cell voltage of 0.6 V with 50 mA current, while being highly uranium-selective. Copper pollution of the water is also prevented, as the dissolved copper from the anode was found on the cathode after testing.

The process was tested on actual seawater (East & South China Sea), with ten hours of operation resulting in a recovery rate of 100% and 85.3% respectively. With potential electrode optimizations suggested by the authors, this extraction method might prove to be a viable way to not only recover uranium from seawater, but also at uranium mining facilities and more.

What Marie Curie Left Behind

It is a good bet that if most scientists and engineers were honest, they would most like to leave something behind that future generations would remember. While Marie Curie met that standard — she was the first woman to win the Nobel prize because of her work with radioactivity, and a unit of radioactivity (yes, we know — not the SI unit) is a Curie. However, Curie also left something else behind inadvertently: radioactive residue. As the BBC explains, science detectives are retracing her steps and facing some difficult decisions about what to do with contaminated historical artifacts.

Marie was born in Poland and worked in Paris. Much of the lab she shared with her husband is contaminated with radioactive material transferred by the Curies’ handling of things like radium with their bare hands.

Continue reading “What Marie Curie Left Behind”

Feline Genetics And Why Orange Cats Are The Most Special

Recently, butlers to orange-colored cats got a bit of a shock when reading the news, as headlines began to call out their fuzzy feline friends as ‘freaks of nature’ and using similarly uncouth terms. Despite the name-calling, the actual reason for this flurry of feline fascination was more benign — with two teams of scientists independently figuring out the reason why some cats have fur that is orange. Tracking down the reason for this turned out to be far more complicated than assumed, with the fact that about 80% of orange cats are male being only the tip of the cat-shaped iceberg.

It was known to be an X chromosome-linked mutation, but rather than the fur coloring being affected directly, instead the mechanism was deduced to be a suppression of the black-brownish pigmentation (eumelanin) in favor of the orange coloration (pheomelanin). Finding the exact locus of the responsible ‘O gene’ (for orange) in the cat genome has been the challenge for years, which turned out to be a mutation related to the X-linked ARHGAP36 gene, whose altered expression results in the suppression of many melanogenesis genes.

Interestingly, this particular mutation appears to be of a singular origin that apparently persisted over millennia courtesy of the domestication of humans (H. sapiens) by Felis catus.

Continue reading “Feline Genetics And Why Orange Cats Are The Most Special”

A Flashlight Of Fire And Ice

[Daniel Salião Ferreira] may or may not be a Game of Thrones fan, but he does have a fun demo of the Seebeck effect in the form of a flashlight powered by fire and ice. The basic idea is to use a thermocouple, but — in this case — he uses a Peltier effect cooler.

The Peltier and Seebeck effects are two sides of the same coin: the Peltier effect creates heating and cooling when current flows through a thermoelectric material. In contrast, the Seebeck effect generates a voltage when there is a temperature gradient. While thermocouples do produce voltage this way, they usually have much lower power output and are useless as heat pumps.

Continue reading “A Flashlight Of Fire And Ice”