An excerpt from Lord Rayleigh’s published manuscript.

Estimating The Size Of A Single Molecule Of Oil Using Water

What is the size of a single molecule of oil? What may initially seem like a trick question – answerable only through the use of complicated, high-tech scientific equipment – is actually as easy to calculate as the circumference of planet Earth. Much like how [Eratosthenes] used a couple of sticks to achieve the latter feat back in about 240 BCE, the size of a molecule of olive oil was calculated in 1890 by [Lord Rayleigh], which is the formal title of [John William Strutt]. Using nothing but water and said olive oil, he managed to calculate the size of a single olive oil molecule as being 1.63 nanometers in length.

To achieve this feat, he took 0.81 mg of olive oil and put it on a known area of water. Following the assumption that the distributed oil across the water surface would form a monolayer, i.e. a layer of oil one molecule thick, he divided the volume of the oil by the covered area, which gave him the thickness of the oil layer. Consequently, this result would also be the dimension (diameter) of a single olive oil molecule.

Many years later we know now that olive oil is composed of triacylglycerols, with a diameter of 1.67 nm, or only about 2% off from the 1890 estimate. All of which reinforces once more just how much science one can do with only the most basic of tools, simply through logical deduction.

Labelled die of the Ramtron FM24C64 FeRAM chip. (Credit: Ken Shirriff)

Inside A 1999 Ramtron Ferroelectric RAM Chip

Structure of the Ramtron FeRAM. The image is focus-stacked for clarity. (Credit: Ken Shirriff)
Structure of the Ramtron FeRAM. The image is focus-stacked for clarity. (Credit: Ken Shirriff)

Although not as prevalent as Flash memory storage, ferroelectric RAM (FeRAM) offers a range of benefits over the former, mostly in terms of endurance and durability, which makes it popular for a range of (niche) applications. Recently [Ken Shirriff] had a look inside a Ramtron FM24C64 FeRAM IC from 1999, to get an idea of how it works. The full die photo can be seen above, and it can store a total of 64 kilobit.

One way to think of FeRAM is as a very small version of magnetic core memory, with lead-zirconate-titanate (PZT) ferroelectric elements making up the individual bits. These PZT elements are used as ferroelectric capacitors, i.e. the ferroelectric material is the dielectric between the two plates, with a positive voltage storing a ‘1’, and vice-versa.

In this particular FeRAM chip, there are two capacitors per bit, which makes it easier to distinguish the polarization state and thus the stored value. Since the distinction between a 0 and a 1 is relatively minor, the sense amplifiers are required to boost the signal. After a read action, the stored value will have been destroyed, necessitating a write-after-read action to restore the value, all of which adds to the required logic to manage the FeRAM. Together with the complexity of integrating these PZT elements into the circuitry this makes these chips relatively hard to produce and scale down.

You can purchase FeRAM off-the-shelf and research is ongoing, but it looks to remain a cool niche technology barring any kind of major breakthrough. That said, the Sega Sonic the Hedgehog 3 cartridges which used an FeRAM chip for save data are probably quite indestructible due to this technology.

The Possibility Of Reverting Time On The Ageing Of Materials

Everyone knows that time’s arrow only goes in one direction, regardless of the system or material involved. In the case of material time, i.e. the ageing of materials such as amorphous materials resulting from glass transition, this material time is determined after the initial solidification by the relaxation of localized stresses and medium-scale reordering. These changes are induced by the out-of-equilibrium state of the amorphous material, and result in changes to the material’s properties, such as a change from ductile to a brittle state in metallic glasses. It is this material time which the authors of a recent paper (preprint) in Nature Physics postulates to be reversible.

Whether or not this is possible is said to be dependent on the stationarity of the stochastic processes involved in the physical ageing. Determining this stationarity through the investigation of the material time in a number of metallic glass materials (1-phenyl-1-propanol, laponite and polymerizing epoxy) was the goal of this investigation by [Till Böhmer] and colleagues, and found that at least in these three materials to be the case, suggesting that this process is in fact reversible.

Naturally, the primary use of this research is to validate theories regarding the ageing of materials, other aspects of which have been investigated over the years, such as the atomic dynamics by [V.M Giordano] and colleagues in a 2016 paper in Nature Communications, and a 2022 study by [Birte Riechers] and colleagues in Science Advances on predicting the nonlinear physical ageing process of glasses.

While none of these studies will give us time-travel powers, it does give us a better understanding of how materials age over time, including biological systems like our bodies. This would definitely seem to be a cause worthy of our time.

Header image: Rosino on Flickr, CC BY-SA 2.0.

Mechanical Logic Gates With Amplification

One of the hardest things about studying electricity, and by extension electronics, is that you generally can’t touch or see anything directly, and if you can you’re generally having a pretty bad day. For teaching something that’s almost always invisible, educators have come up with a number of analogies for helping students understand the inner workings of this mysterious phenomenon like the water analogy or mechanical analogs to electronic circuits. One of [Thomas]’s problems with most of these devices, though, is that they don’t have any amplification or “fan-out” capability like a real electronic circuit would. He’s solved that with a unique mechanical amplifier.

Digital logic circuits generally have input power and ground connections in addition to their logic connection points, so [Thomas]’s main breakthrough here is that the mechanical equivalent should as well. His uses a motor driving a shaft with a set of pulleys, each of which has a fixed string wrapped around the pulley. That string is attached to a second string which is controlled by an input. When the input is moved the string on the pulley moves as well but the pulley adds a considerable amount of power to to the output which can eventually be used to drive a much larger number of inputs. In electronics, the ability to drive a certain number of inputs from a single output is called “fan-out” and this device has an equivalent fan-out of around 10, meaning each output can drive ten inputs.

[Thomas] calls his invention capstan lever logic, presumably named after a type of winch used on sailing vessels. In this case, the capstan is the driven pulley system. The linked video shows him creating a number of equivalent circuits starting with an inverter and working his way up to a half adder and an RS flip-flop. While the amplifier pulley does take a minute to wrap one’s mind around, it really helps make the equivalent electronic circuit more intuitive. We’ve seen similar builds before as well which use pulleys to demonstrate electronic circuits, but in a slightly different manner than this build does.

Continue reading “Mechanical Logic Gates With Amplification”

Inviting The Public To Take Stereo Photos For Science

[Lynnadeng]’s team wanted to monitor the Los Angeles River over time and wanted citizen scientists — or anyone, for that matter — to help. They built a dual phone holder to allow random passersby to use their phones to take photos. A QR code lets them easily send the pictures to the team. The 3D printed holder is fixed in place and has a known gap that allows stereo reconstruction from pairs of photos.

Of course, people aren’t going to know what to do, so you need a sign with instructions along with the QR code. One advantage to this scheme is that it’s cheap. All the camera hardware is in the public’s phone. Of course, you still have to make the holder robust to the elements, but that’s not nearly as difficult as supplying power and weatherproofing cameras and radios.

The real interesting part is the software. At first, we were disappointed that the post had a dead link to GitHub, but it was easy enough to find the correct one. In some cases, people will use a single camera, so 3D reconstruction isn’t always possible.

We love citizen science around here. No matter where you live, there are many opportunities to contribute.

Catching The BOAT: Gamma-Ray Bursts And The Brightest Of All Time

Down here at the bottom of our ocean of air, it’s easy to get complacent about the hazards our universe presents. We feel safe from the dangers of the vacuum of space, where radiation sizzles and rocks whizz around. In the same way that a catfish doesn’t much care what’s going on above the surface of his pond, so too are we content that our atmosphere will deflect, absorb, or incinerate just about anything that space throws our way.

Or will it? We all know that there are things out there in the solar system that are more than capable of wiping us out, and every day holds a non-zero chance that we’ll take the same ride the dinosaurs took 65 million years ago. But if that’s not enough to get you going, now we have to worry about gamma-ray bursts, searing blasts of energy crossing half the universe to arrive here and dump unimaginable amounts of energy on us, enough to not only be measurable by sensitive instruments in space but also to effect systems here on the ground, and in some cases, to physically alter our atmosphere.

Gamma-ray bursts are equal parts fascinating physics and terrifying science fiction. Here’s a look at the science behind them and the engineering that goes into detecting and studying them.

Continue reading “Catching The BOAT: Gamma-Ray Bursts And The Brightest Of All Time”

The Universe As We Know It May End Sooner Than Expected

The 'Sombrero Potential' as seen with the Higgs mechanism.
The ‘Sombrero Potential’ as seen with the Higgs mechanism.

One of the exciting aspects of some fields of physics is that they involve calculating the expected time until the Universe ends or experiences fundamental shifts that would render most if not all of the ‘laws of physics’ invalid. Within the Standard Model (SM), the false vacuum state is one such aspect, as it implies that the Universe’s quantum fields that determine macrolevel effects like mass can shift through quantum field decay into a lower, more stable state. One such field is the Higgs field, which according to a team of researchers may decay sooner than we had previously assumed.

As the Higgs field (through the Higgs boson) is responsible for giving particles mass, it’s not hard to imagine the chaos that would ensue if part of the Higgs field were to decay and cause a spherical ripple effect throughout the Universe. Particle masses would change, along with all associated physics, as suddenly the lower Higgs field state means that everything has significantly more mass. To say that it would shake up the Universe would an understatement.

Of course, this expected time-to-decay has only shifted from 10794 years to 10790 years with the corrections to the  previous calculations as provided in the paper by [Pietro Baratella] and colleagues, and they also refer to it as ‘slightly shorter’. A sidenote here is also that the electroweak vacuum’s decay is part of the imperfect SM, which much like the false vacuum hypothesis are part of these models, and not based on clear empirical evidence (yet).