Four large nixie tubes showing the number 2

[Dalibor Farný]’s Enormous Nixies Light Up Contemporary Art Museum

Nixie tubes come in many shapes and sizes, but in only one color: the warm orange glow that makes them so desirable. They don’t usually come in large numbers, either: a typical clock has four or six; a frequency counter perhaps eight or nine. But some projects go bigger – a lot bigger in [Dalibor Farný]’s case. He built an art installation featuring more than a hundred jumbo-sized nixie tubes that make an entire wall glow orange.

This project is the brainchild of renowned installation artist [Alfredo Jaar], who was invited to create an exhibition at the Hiroshima Museum of Contemporary Art. Its title, Umashimenkana, means “we shall bring forth new life” and refers to a poem describing the birth of a child amid the suffering and despair following the atomic bombing of Hiroshima. Visitors to the exhibit experience a dark room where they see a wall of orange numbers count down to zero and erupt into a waterfall of falling zeroes.

Nixie tube expert [Dalibor] was the go-to person to implement such an installation – after all, he’s one of very few people making his own tubes. But even he had to invest a lot of time and effort into scaling them up to the required 150 mm diameter, with 135 mm tall characters. We covered his efforts towards what was then known as the H-tube project two years ago, and we’re happy to report that all of the problems that plagued his efforts at the time have since been solved.

The cathodes of a large nixie tube being assembledOne of the major issues was keeping the front of the tubes intact during manufacture. Often, [Dalibor] and his colleagues would finish sealing up a tube, only for the front to pop out due to stress build-up in the glass. A thorough heating of the entire surface followed by a slow cooling down turned out to be the trick to evening out the stress. All this heat then caused oxidation of the cathodes, necessitating a continuous flow of inert gas into the tube during manufacture. Those cathodes already had to be made stronger than usual to stop them from flexing, and the backplate light enough to keep everything shock resistant. The list goes on.

After ironing out these quirks, as well as countless others, [Dalibor] was finally able to set up a small-scale production line in a new workshop to get the required 121 tubes, plus spares, ready for shipment to Japan. The team then assembled the project on-site, together with museum staff and the artist himself. The end result looks stunning, as you can see in the excellent video embedded below. We imagine it looks even better in real life – if you want to experience that, you have until October 15th.

You might remember [Dalibor] from his excellent video on nixie clock fault analysis – which we hope won’t be necessary for Umashimenkana. He might be able to make your favorite shape into a nixie tube, too. Thanks for the tip, [Jaac]!

Continue reading “[Dalibor Farný]’s Enormous Nixies Light Up Contemporary Art Museum”

The Science Behind The Majesty Of Dancing Raisins

Have you ever thrown a handful of raisins into a tub of sparkling water? Or peanuts into beer? It seems like an altogether strange thing to do, but if you’ve tried it, you’ll have seen the way the raisins dance and tumble in the fluid. As it turns out, there’s some really interesting science at play when you dive into the mechanics of it all. [Saverio Spagnolie] did just that, and even went as far as publishing a paper on the topic.

The fundamental mechanism behind the dancing raisins is down to the bubbles in sparkling water. When dropped into the fluid, bubbles form on the raisins and attach to them, giving them additional buoyancy.  They then float up, with some of the bubbles shedding or popping on the way, others doing so at the fluid surface. This then causes the raisins to lose buoyancy, rotate, flop around, and generally dance for our amusement.

[Saverio] didn’t just accept things at face value though, and started taking measurements. He used 3D-printed models to examine bubble formation and the forces involved. Along with other scientists, models were developed to explore bubble formation, shedding, and the dynamics of raisin movement. If you don’t have time to dive into the paper, [Saverio] does a great job of explaining it in a Twitter thread (Nitter) in an accessible fashion.

It’s a great example of cheap kitchen science that can teach you all kinds of incredible physics if you just care to look. Video after the break.

Continue reading “The Science Behind The Majesty Of Dancing Raisins”

Mistranslation Of Newton’s First Law Discovered After Nearly 300 Years

For hundreds of years, we have been told what Newton’s First Law of Motion supposedly says, but recently a paper published in Philosophy of Science (preprint) by [Daniel Hoek] argues that it is based on a mistranslation of the original Latin text. As noted by [Stephanie Pappas] in Scientific American, this would seem to be a rather academic matter as Newton’s Laws of Motion have been superseded by General Relativity and other theories developed over the intervening centuries. Yet even today Newton’s theories are highly relevant, as they provide very accessible approximations for predicting phenomena on Earth.

Similarly, we owe it to scientific and historical accuracy to address such matters, all of which seem to come down to an awkward translation of Isaac Newton’s original Latin text in the 1726 third edition to English by Andrew Motte in 1729. This English translation is what ended up defining for countless generations what Newton’s Laws of Motion said, along with the other chapters in his Philosophiæ Naturalis Principia Mathematica.

Continue reading “Mistranslation Of Newton’s First Law Discovered After Nearly 300 Years”

Determining The Size Of The New US Lithium Deposit Amidst Exploding Demand

With demand for lithium in the world market projected to increase by 2040 to as much as eight times the demand in 2022, finding new deposits of this metal has become a priority. Currently most of the world’s lithium comes from Australia, Chile, China and Argentina, with potential new mining sites under investigation. One of these sites is the McDermitt caldera in the US, a likely remnant of the Yellowstone hotspot and resulting volcanic activity. According to a recent study (Chemistry World article) by Thomas R. Benson and colleagues in Science Advances, this site may not only contain between 20 to 40 million tons of lithium in the form of the mineral clay illite, but was also formed using a rather unique process.

This particular group of mineral clays can contain a number of other chemicals, which in this particular case is lithium due to the unique way in which the about 40 meter thick layer of sediment was formed. Although lithium is a very common metal, its high reactivity means that it is never found in its elementary form, but instead bound to other elements. Lithium is thinly distributed within the Earth’s crust and oceans. Incidentally, the Earth’s oceans contain by far the largest amount of lithium, at approximately 230 billion tons.

So how much lithium could be extracted from this new area, and how does this compare to the increasing demand?

Continue reading “Determining The Size Of The New US Lithium Deposit Amidst Exploding Demand”

Zinc-Air, The Next Contender In Vehicle Batteries?

If you’ve got an interest in technology, it’s inevitable that your feed will feature a constant supply of stories with titles in the vein of “New battery breakthrough offers unlimited life and capacity!”. If we had a pound, dollar, or Euro for each one, we’d be millionaires by now. But while the real science behind the breathless headlines will undoubtedly have provided incremental battery improvements, we’re still waiting for the unlimited battery.

It’s not to say that they don’t conceal some interesting stories though, and there’s an announcement from Australia proving this point admirably. Scientists at ECU in Perth have created a new cathode compound for rechargeable zinc-air batteries, which it is hoped will make them much safer and cheaper competitors for lithium-ion cells.

Most of us think of zinc-air batteries as the tiny cells you’d put in a camera or a hearing aid, but these conceal a chemistry with significant potential that is held back by the difficulty of creating a reliable cathode. In these batteries the cathode is a porous support in which a reaction between zinc powder wet paste and oxygen in the air occurs, turning zinc into zinc oxide and releasing electrons which can be harvested as electricity. They have a very high power density, but previous cathode materials have quickly degraded performance when presented with significant load.

The new cathode support is a nano-composite material containing cobalt, nickel, and iron, and is claimed to offer much better performance without the degradation. Whether or not it can be mass-produced remains to be seen, but as a possible alternative to lithium-ion in portable and transport applications it’s of great interest.

Tape Is Very, Very Quiet

If someone stops by and asks you to help them make some noisy thing less noisy, you probably wouldn’t reach for a roll of tape. But [The Action Lab] shows some 3M tape made for exactly that purpose. For the right kind of noise, it can dampen noise caused by a surface vibrating. You can see how (and why) it works in the video below.

The tape works using a technique known as “constrained layer damping.” Obviously, the tape only works in certain applications. The video explains that it bonds a stiff surface to the vibrating surface using an elastic-like layer. The tape reduces vibrations from things like cymbals and a cookie tin. The noise reduction is both in amplitude and in the duration of the sound, making things noticeably quieter.

You sometimes see a similar material in cars to reduce vibration noise, but we aren’t sure if it uses the same technique. We’ve also seen different kinds of tape used to lower drums’ volume. Reduces the neighbor’s complaints about your practice jam sessions.

This tape reduces noise but can also reduce fatigue wear on metal and composite structures. The downside is it seems extraordinarily expensive. It also doesn’t help that most places want you to buy an entire case, which drives the price even higher. Depending on the size, you can expect to pay about $200 for each 36-yard roll of this tape. But it seems like the principle involved is simple enough that you could make your own, sort of like the video does with the aluminum plate.

Usually, when we talk about noise reduction around here, we mean the electronic kind. Or, sometimes, fungal.

Continue reading “Tape Is Very, Very Quiet”

Triso Fuel And The Rolls Royce Of Nuclear Reactors

Bangor University scientists think that the way to go big with nuclear power is to, in fact, go small. Their tiny nuclear fuel pellets called triso fuel are said to be the size of poppy seeds and are meant to power a reactor by Rolls Royce the size of a “small car.” We aren’t sure if that’s a small Rolls Royce or a small normal car.

The Welsh university thinks the reactor has applications for lunar bases, here on Earth, and even on rockets because the reactor is so small. We can’t tell if the fuel from Bangor is unique or if it is just the application and the matching reactor that is making the news. Triso fuel — short for tri-structural isotropic particle fuel — was developed in the 1960s, and there are multiple projects worldwide gearing up to use this sort of fuel.

Continue reading “Triso Fuel And The Rolls Royce Of Nuclear Reactors”