Fusion 360 Logo

Local Simulation Feature To Be Removed From All Autodesk Fusion 360 Versions

The removal of features from Autodesk products would appear to be turning into something of a routine at this point, with the announced removal of local simulations the latest in this series. Previously Autodesk had severely cut down the features available with a Personal Use license, but these latest changes (effective September 6) affect even paying customers, no matter which tier.

While previously executed local simulations on designs will remain accessible, any updates to these simulations, as well as any new simulations will have to use Autodesk’s cloud-based solver. This includes the linear stress, modal frequencies, thermal, and thermal stress simulation types, with each type of simulation study costing a number of Cloud Tokens.

Solving a linear simulation should initially cost 0 tokens, but the other types between 3 – 6 tokens, with the exact cost per token likely to vary per region. This means that instead of solving simulations for free on one’s own hardware, the only option in a matter of weeks will be solely through Autodesk’s cloud-based offerings.

Naturally, we can see this change going over exceedingly well with Fusion 360 users and we’re looking forward to seeing how Autodesk will spin the inevitable backlash.

(Thanks, [Jeremy Herbert] for the tip)

screenshot from the video linked, showing example code that lights up an LED, and in a small window, also shows the LED lit up on a small Pi Pico board connected over USB

Your MicroPython Board Can Be Your Tinkering Peripheral

[Brian Pugh] has shared a cool new project that simultaneously runs on desktop Python and MicroPython – the Belay library. This library lets you control a MicroPython device seamlessly from your Python code – interacting with real-world things like analog/digital trinkets, servos, Neopixels and displays, without having to create your own firmware or APIs.

You need a serial-connected MicroPython board – even an ESP8266 should do. Then, you can intersperse your Python code with MicroPython-written functions, and call them whenever you need your connected device to do something – keeping the entire logic of your project within a single device. [Brian] provides quite a few examples, even for more complex things like displays. No doubt, there are limitations, but this looks to be a powerful tool in a hacker’s arsenal.

Readers might be reminded of an Arduino library called Firmata – an old-time way to do such connectivity. We’ve also previously covered a Pi Pico firmware that does a similar thing, and even features a breakout board for all your experimentation needs!
Continue reading “Your MicroPython Board Can Be Your Tinkering Peripheral”

Scratching Out Business Intelligence

At Hackaday, we love things both from scratch and in Scratch, Scratch being the blocks building helpful language for teaching kids and the like how to program. However, when you have a large amount of data that needs to be processed, queried, and collated to get meaningful insights, it is a pain to rewrite a SQL query every time a new question arises that needs an answer. So perhaps a more elegant approach would be to give the people asking the questions the tools to answer them, but rather than teach them SQL, Mongo, GraphQL, or any other database, give them the tools to scratch out the answers themselves.

That’s enough scratch puns for one article. [Tommy] ran into this situation in 2011 and recently wrote about it. Scratch came out in 2003 and has inspired several projects, such as Google’s Blockly. [Tommy] used Blockly to create a web app where users could drag and drop different blocks to form queries. These layouts were passed to a PHP-backed (though later HVVM for performance reasons) and executed as SQL.

Eventually, big data came around, and the company hired proper data scientists. Though [Tommy] notes that some of those who used his tool went on to learn proper SQL and do it themselves. Applying concepts from programs designed to teach children programming might sound a little odd in a business sense, but we love seeing projects that help someone become curious enough to peer inside the machine.

30 Free Circuit Simulators Lightly Reviewed

We live in a time where great software is available with the click of a mouse, often for free or — at least — low cost. But there’s a problem: how do you select from so many alternatives? We were interested in [Lee Teschler]’s review earlier this year of 30 free circuit simulators. If you are selecting one or don’t like the one you are currently using, it is well worth the time to review.

There are several on the list that you’ve probably heard of before like GNUCap and LTspice. There are also some lesser-known products. Some of those are just trial or student versions of paid products. Some are branded versions of commercial products (like Tina) or were made free after selling for higher price tags (like MicroCap 12).

Old favorites like Falstad (which is apparently known as Circuit Sims) and TinkerCAD made the list. Many of the trial versions were very limited. For example, DCAClab only provides an NPN bipolar transistor model. Proteus doesn’t let you save or print unless you pay. While the list includes TI’s Tina, it doesn’t seem to mention that TI also provides a free version of PSpice which is a very popular professional product.

While the capsule descriptions are nice, you may want to dig in a little on the ones you are most interested in. For example, Falstad has a great mixed mode that can even include an AVR microprocessor. But there were a few on the list we had not heard of and maybe you’ll find something new there, too.

Never Too Rich Or Thin: Compress Sqlite 80%

We are big fans of using SQLite for anything of even moderate complexity where you might otherwise use a file. The advantages are numerous, but sometimes you want to be lean on file storage. [Phiresky] has a great answer to that: the sqlite-zstd extension offers transparent row-level compression for SQLite.

There are other options, of course, but as the post mentions, each of these have some drawbacks. However, by compressing each row of a table, you can retain random access without some of the drawbacks of other methods.

Continue reading “Never Too Rich Or Thin: Compress Sqlite 80%”

Adding Perlin Noise To 3D Printed Parts, With Python

Want to add a bit of visual flair to 3D printed parts that goes maybe a little more than skin-deep? That’s exactly what [volzo] was after, which led him to create a Python script capable of generating a chunk of Perlin noise, rendered as an STL file. What does that look like? An unpredictably-random landscape of hills and valleys.

The script can give printed parts a more appealing finish.

The idea is to modify a 3D model with the results of the script, leaving one with something a bit more interesting than a boring, flat surface. [volzo] explains how to use OpenSCAD to do exactly that, but it’s also possible to import the STL file the script creates into the CAD program of one’s choice and make the modifications there with some boolean operations.

If the effect looks a bit bit familiar, it’s likely because he used the method to design part of the 3D printed “toy” camera that we featured recently.

[volzo]’s method isn’t entirely plug and play, but it could still be a handy thing to keep in your back pocket when designing your next part. There are also other ways to modify the surfaces of prints for better aesthetics; we’ve previously covered velocity painting (also known as ‘tattooing’ in some slicers) and also fuzzy skin.

Perlin noise was created by [Ken Perlin] in the early 80s while working on the original Tron movie as a way to help generate more realistic-looking textures. It still fulfills that artistic function in a variety of ways, even today.

Color Us Impressed: Redbean Runs A Web Server On Six Operating Systems

The holy grail of computing is to have some way to distribute a program to any computer. This is one of those totally unachievable goals, but many have tried with varying degrees of success.  People naturally think of Java, but even before that there was UCSD’s P-code and many other attempts to pull off the same trick. We were impressed, though, with Redbean 2.0 which uses a single executable file to run a webserver — or possibly other things — on six different operating systems. If the six operating systems were all flavors of Linux or Windows that wouldn’t be very interesting. But thanks to APE — the Actually Portable Executable — format, you can run under Windows, Linux, MacOS, OpenBSD, NetBSD, and FreeBSD.

This is quite a feat when you realize that most of these take wildly different file formats. There is one small problem: you can’t use much of anything on the host operating system. However, if you look at Redbean, you’ll see there is quite a lot you can do.

Continue reading “Color Us Impressed: Redbean Runs A Web Server On Six Operating Systems”