Seeing Inside A Gas Regulator

We’re surrounded by interesting engineering, but some of it is sealed inside a housing, away from easy inspection. A case in point; the humble gas regulator. It’s in equipment all around us, from a propane grill to welding gear. It’s a sealed unit — have you ever seen the inside, to know how it really works? Well thanks to [FarmCraft101], we get to do just that, in the video after the break.

To let the cat out of the bag, it’s essentially a hydraulic lever. A large diaphragm is pressurized by the low pressure side of the regulator, and is held back by a spring. When the pressure compared to ambient atmosphere is high enough to overcome the spring tension, the lever is tilted, closing the high pressure valve. Hence, pressure is determined by spring strength. We also get a look at how the system can fail — in this case it seemed to be some grit interfering with the valve. We find hidden engineering to be supremely satisfying, particularly when we get to understand it so clearly as we do here. Enjoy!

Continue reading “Seeing Inside A Gas Regulator”

Teardown: VTech Smart Start

Regular readers may be aware that I have a certain affinity for vintage VTech educational toys, especially ones that attempted to visually or even functionally tie in with contemporary computer design. In the late 1980s, when it became obvious the personal computer was here to stay, these devices were seen as an affordable way to give kids and even young teens hands-on time with something that at least somewhat resembled the far more expensive machines their parents were using.

Much Smarter: VTech PreComputer 1000

A perfect example is the PreComputer 1000, released in 1988. Featuring a full QWERTY keyboard and the ability to run BASIC programs, it truly blurred the line between toy and computer. In fact from a technical standpoint it wasn’t far removed from early desktop computers, as it was powered by the same Zilog Z80 CPU found in the TRS-80 Model I.

By comparison, the Smart Start has more in common with a desktop electronic calculator. Even though it was released just two years prior to the PreComputer 1000, you can tell at a glance that it’s a far more simplistic device. That’s due at least in part to the fact that it was aimed at a younger audience, but surely the rapid advancement of computer technology at the time also played a part. Somewhat ironically, VTech did still at least attempt to make the Smart Start look like a desktop computer, complete with the faux disk drive on the front panel.

Of course, looks can be deceiving. While the Smart Start looks decidedly juvenile on the outside, that doesn’t mean there aren’t a few surprising technical discoveries lurking under its beige plastic exterior. There’s only one way to find out.

Continue reading “Teardown: VTech Smart Start”

Up Close And Personal With Some Busted Avionics

When he found this broken Narco DME 890 that was headed for the trash, [Yeo Kheng Meng] did what any self-respecting hardware hacker would do: he took it back to his workbench so he could crack it open. After all, it’s not often you get to look at a piece of tech built to the exacting standards required by even outdated avionics.

DME stands for “Distance Measuring Equipment”, and as you might expect from the name, it indicates how far the aircraft is from a given target. [Yeo Kheng Meng] actually goes pretty deep into the theory behind how it works in his write-up if you’re interested in the nuts and bolts of it all, but the short version is that the pilot selects the frequency of a known station on the ground, and the distance to the target is displayed on the screen.

Inside the device, [Yeo Kheng Meng] found several densely packed boards, each isolated to minimize interference. The main PCB plays host to the Mostek MK3870 microcontroller, an 8-bit chip that screams along at 4 MHz and offers a spacious 128 bytes of RAM. It doesn’t sound like much to the modern AVR wrangler, but for 1977, it was cutting edge stuff.

Digging further, [Yeo Kheng Meng] opens up the metal cans that hold the transmitter and receiver. Thanks to the excellent documentation available for the device, which contains extensive schematics and block diagrams, he was able to ascertain the function of many of the components. Even if you’re unlikely to ever go hands on with this type of technology, it’s fascinating to see the thought and attention to detail that goes into even seemingly mundane aspects of the hardware.

Hungry for more airworthy engineering? We’ve taken a close look at some hardware pulled from a civilian airliner, as well as some battle-hardened electronics that once graced the cockpit of an AH-64 Apache attack helicopter.

StarLink Terminal Unit Firmware Dumped

There’s a lot of expense in what telephone companies call “the last mile” — delivering service from the main trunks to your home or business. StarLink wants to avoid that cost by connecting you via an array of low-orbit satellites and some users are already using the service. In Belgium, [Lennert Wouters] managed to dump the terminal’s firmware and has some interesting observations.

The teardown is actually more than just a firmware dump. His “level 1” teardown involves exposing the board. This can be tricky because there are apparently different versions of the terminal out already, so advice from one source might not match your hardware, and that was the case here.

Continue reading “StarLink Terminal Unit Firmware Dumped”

Lightwave Multimeter Teardown

You tend to think of test equipment in fairly basic terms: a multimeter, a power supply, a signal generator, and an oscilloscope. However, there are tons of highly-specialized test equipment for very specific purposes. One of these is the 8163A “lightwave multimeter” and [Signal Path] tears one part for repair in a recent video that you can see below.

If you’ve never heard of a lightwave multimeter, don’t feel bad. The instrument is a measuring system for fiber optics and, depending on the plugins installed, can manage a few tests that you’d usually use an optical power meter, a laser or light source, and some dedicated test jigs to perform. Continue reading “Lightwave Multimeter Teardown”

Review And Teardown Of Economical Programmable DC Power Supply

[Kerry Wong] isn’t afraid to get his hands dirty, and is always more than willing to open things up and see what makes them tick. This time, he reviews and tears down the Topshak LW-3010EC programmable DC power supply, first putting the unit through its paces, then opens it up to see how it looks on the inside.

The Topshak LW-3010EC is in a family of reasonably economical power supplies made by a wide variety of manufacturers, which all share many of the same internals and basic construction. This one is both programmable as well as nice and compact, and [Kerry] compares and contrasts it with other power supplies in the same range as he tests the functions and  checks over the internals.

Overall, [Kerry] seems pleased with the unit. You can watch him put the device through its paces in the video embedded below, which ends with him opening it up and explaining what’s inside. If you’ve ever been curious about what’s inside one of these power supplies and how they can be expected to perform, be sure to fire up the video below the page break.

Speaking of power supplies, most of us have ready access to ATX power supplies. They are awfully capable pieces of hardware, and hackable in their own way. Our own Jenny List will tell you everything you need to know about the ATX power supply, and how to put it to new uses.

Continue reading “Review And Teardown Of Economical Programmable DC Power Supply”

Teardown: Franz Crystal Metronome

I wish I could tell you that there’s some complex decision tree at play when I select a piece of hardware to take apart for this series, but ultimately it boils down two just two factors: either the gadget was something I was personally interested in, or it was cheap. An ideal candidate would check both boxes, but that’s not always the case. This time around however, I can confidently say our subject doesn’t fall into either category.

Now don’t get me wrong, at first glance I found the Franz Crystal Metronome to be intriguing in its own way. With that vintage look, how could you not? But I’m about as far from a musician as one can get, so you’d hardly find a metronome on my wish list. As for the cost, a check on eBay seems to show there’s something of a following for these old school Franz models, with ones in good condition going for $50 to $80. Admittedly not breaking the bank, but still more than I’d like to pay for something that usually ends up as a pile of parts.

That being the case, why are you currently reading about it on Hackaday? Because it exploits something of a loophole in the selection process: it doesn’t work, and somebody gave it to me to try and figure out why. So without further ado let’s find out what literally makes a Franz Crystal Metronome tick, and see if we can’t get it doing so gain.

Continue reading “Teardown: Franz Crystal Metronome”