Hackaday Prize 2023: Tilting Mechanical Panels Make A Beautiful Display

Mechanical displays use a variety of different methods to represent data with physical objects, and [AIRPOCKET]’s Mechanical Display aims to be a platform anyone can use. Each “pixel” in this display is a panel of some kind, and different effects can be had by moving individual panels to different angles. Not only can images be represented, but the patterns of the movements themselves can be beautiful as well.

The panels are an important part of how the display presents, so the design makes them easy to change out.

These sorts of displays are fertile ground for artistic expression (one memorable implementation of this basic idea was the wooden mirror, which used varnished tiles of wood) but anyone looking to use the concept has usually been on their own when it comes to implementation.

The idea [AIRPOCKET] has is to make this kind of installation easier to implement. This method uses economical mini RC servos and 3D-printed pieces to create modular segments that can be assembled into whatever configuration one may need.

The material of the panels matters, too. Just below the page break, you can see a large unit with each “pixel” consisting of a mirrored square that reflects daylight. There’s also a video of an earlier prototype that uses some ridged two-color pieces to create a simple 4×4 three-level greyscale display.

There are a lot of possibilities if [AIRPOCKET] can make this sort of display more easily accessible, and that makes it a contender in the 2023 Hackaday Prize.

Continue reading “Hackaday Prize 2023: Tilting Mechanical Panels Make A Beautiful Display”

Hackaday Prize 2023: OMOTE Universal Remote

A good universal remote can help tame today’s complex home entertainment systems, combining both classic IR and more modern WiFi and Bluetooth connectivity with programmable functions that allow the user to execute multi-step operations with a single button. Unfortunately, programming them often involves the use of clunky proprietary software.

Which is why [Maximilian Kern] has developed the OMOTE. This open source universal remote is powered by the ESP32, and features the usual collection of physical buttons in addition to a 2.8” 320 x 240 touchscreen with a responsive graphical interface that can display more advanced user interfaces. Everything is packed into an ergonomic 3D printed case that gives it an exceptionally professional look.

The remote’s USB-C port can be used to recharge the internal 2,000 mAhA battery, as well as reprogram the ESP32’s firmware via a CH340C serial chip. The battery life is estimated to be about six months given the considerable low-power capabilities of the ESP32, which includes the use of a LIS3DH 3-axis accelerometer to keep the hardware in sleep mode until it’s picked up.

The software side is still in development, so the IR codes for the remote are currently hardcoded and its WiFi capabilities are limited to MQTT. But in the future, [Maximilian] imagines a web-based configuration interface that runs on the ESP32 and lets you add codes and setup the remote via your phone or desktop.

It looks like the hardware is more or less complete, so presumably the focus from here on out will be bringing the software across the finish line. Don’t worry, there’s still plenty of time — since it’s an entry into the Gearing Up challenge of the 2023 Hackaday Prize, the judges won’t pick the finalists until August 8th.

Continue reading “Hackaday Prize 2023: OMOTE Universal Remote”

Hackaday Prize 2023: Wear-a-Chorder Lets Discreet Chording Keyboards Do The Talking

Being mute or speech-challenged can be a barrier, and [Raymond Li] has an interesting project to contribute to the 2023 Hackaday Prize: a pair of discreet chording keyboards that allow the user to emit live text-to-speech as quickly as one can manipulate them.

Rapid generation of input to high-quality speech helps normalize interactions.

The project leverages recent developments to deliver high-quality speech via an open-source web app called VoiceBox, while making sure the input devices themselves don’t get in the way of personal interaction. Keeping the chorders at waist level and ensuring high-quality speech is generated and delivered quickly goes a long way towards making interaction and communication flow more naturally.

The VoiceBox software is doing the heavy lifting, and there’s not yet much detail about the rest of the hardware used in the prototype. It’s currently up to the user to figure out a solution for a wearable computer or a suitable chording keyboard. Still, the prototype looks like the Charachorder with a 3D-printed mounting solution to locate them at one’s beltline. Of course, the beauty of the underlying system being so standard is that one can use whatever is most comfortable.

Hackaday Prize 2023: Throwaway Temperature Logger To Useful ARM Dev Board

The global supply chain is a masterpiece of containerized logistics that allows a container to leave a factory in China and arrive on a British forecourt after only a few weeks, but along with the efficiency it brings a traceability and monitoring problem. If you are shipping perishable items such as medicines or foodstuffs, how can you be sure that they’ve remained refrigerated the whole journey through?

The answer comes in digital temperature loggers, and since these are throwaway devices [arduinocelentano] decided to look inside and see if they could be reused. The answer is positive, in that many models have the potential to be useful dev boards for very little money.

These devices usually take the form of a bulky USB dongle with an LCD display and a few buttons. Inside they invariably have a low-power ARM microcontroller and a battery as well as the temperature sensor and some flash memory to store the readings. The data is read by the customer through the USB port, and they’re single use with manufacturers paying only lip service to recycling, because the data must by necessity be impossible to erase or alter. Happily for all that, many of them appear to be well-designed internally, with the relevant debug and programming ports exposed and the ability to access the microcontroller. We look forward to seeing what comes of these boards, because while the worst of the chip shortage my now be receding it’s always good to find a new source.

Hackaday Prize 2023: Sleek Macro Pad Makes 2FA A Little Easier

We all know the drill when it comes to online security — something you know, and something you have. But when the “something you have” is a two-factor token in a keyfob at the bottom of a backpack, or an app on your phone that’s buried several swipes and taps deep, inconvenience can stand in the way of adding that second level of security. Thankfully, this “2FA Sidecar” is the perfect way to lower the barrier to using two-factor authentication.

That’s especially true for a heavy 2FA user like [Matt Perkins], who typically needs to log in and out of multiple 2FA-protected networks during his workday. His Sidecar is similar in design to many of the macro pads we’ve seen, with a row of Cherry MX key switches, a tiny TFT display — part of an ESP32-S3 Reverse TFT Feather — and a USB HID interface. Pressing one of the five keys on the pad generates a new time-based one-time password (TOTP) and sends it over USB as typed keyboard characters; the TOTP is also displayed on the TFT if you prefer to type it in yourself.

As for security, [Matt] took pains to keep things as tight as possible. The ESP32 only connects to network services to keep the time synced up for proper TOTP generation, and to serve up a simple web configuration page so that you can type in the TOTP salts and service name to associate with each key. He also discusses the possibility of protecting the ESP32’s flash memory by burning the e-fuses, as well as the pros and cons of that maneuver. The video below shows the finished project in action.

This is definitely a “use at your own risk” proposition, but we tend to think that in the right physical environment, anything that makes 2FA more convenient is probably a security win. If you need to brush up on the risks and benefits of 2FA, you should probably start here.

Continue reading “Hackaday Prize 2023: Sleek Macro Pad Makes 2FA A Little Easier”

Hackaday Prize 2023: Bluetooth Spell To Speak

Have you ever known what you wanted to say but couldn’t figure out exactly how to say it? For some individuals, that’s all the time. The gap between intention and action can be a massive chasm. [Pedro Martin] is trying to help bridge that gap with a Bluetooth RPM letterboard.

[Soma Mukhopadhyay] developed Rapid Prompting Method (RPM) for teachers to work with students with autism. Gentle physical cues can help individuals complete motor movements, which can be used as a communication mechanism by pointing to a letterboard. Students can eventually move onto an tablet, but some students see the light as sensory noise or might associate it with playtime.

[Pedro] hopes that his letterboard will be able to provide tactile feedback for each letter to strengthen the connection the teacher is trying to establish. The letter board is a 22 by 14 grid (308 total) of touch electrodes connected to three MPR121 12-channel capacitive touch sensors connected to an ESP32 via I2C. Additionally, 60 LEDS controlled by two shift registers are interspaced between the touch electrodes. As only one LED will be on at a given time, [Pedro] can use the shift registers in a row/column setup since the current draw should be small. A piezo buzzer serves as additional feedback for the student. The ESP32 emulates a Bluetooth keyboard, so the teacher doesn’t have to keep track of what the student is spelling and can focus on RPM.

[Pedro] encountered the usual slew of debugging problems, such as ground bouncing, captive noise, and Bluetooth wonkiness. The code, KiCad, and STL files are on the Hackaday.io project page. If you want more accessibility-focused keyboards, look at the RP2040-based Intellikeys we saw recently.

Continue reading “Hackaday Prize 2023: Bluetooth Spell To Speak”

Hackaday Prize 2023: LASK4 Watches Those Finger Wiggles

What do you get when you combine an ESP32-S2, a machine-learning model, some Hall effect sensors, and a grip exercise toy? [Turfptax] did just that and created LASK4. The four springs push down pistons with tiny magnets on them. Hall effect sensors determine the piston’s position, and since the springs are linear, the ESP32 can also estimate the force being applied on a given finger. This data is then streamed to a nearby computer over TCP. A small OLED screen shows the status, and a tidy 3D printed case creates a comfortable package.

So other than an excellent musical instrument, what is this good for? First, it creates well-labeled training data when combined with what is collected by the muscle sensor band we discussed previously. The muscle band measures various pressure sensors radially around the forearm. With just a few minutes of training data, the system can accurately predict finger movement using the random forest regression model.

What would you use it for? It’s considered a somatosensory device, so it can be used for physical therapy when undergoing hand rehabilitation, as it provides feedback during sessions. Or it could be used to train a controller efficiently.

It’s an exciting project on GitHub under an OpenCERN hardware license. The code is in MicroPython, and the PCB and STL files are included. We’re looking forward to seeing what else comes from the project. After the break, there’s a progress update video.

Continue reading “Hackaday Prize 2023: LASK4 Watches Those Finger Wiggles”