Arduino And Encoder Form Precision Jig For Cutting And Drilling

“Measure twice, cut once” is great advice in every aspect of fabrication, but perhaps nowhere is it more important than when building a CNC machine. When precision is the name of the game, you need measuring tools that will give you repeatable results and preferably won’t cost a fortune. That’s the idea behind this Arduino-based measuring jig for fabricating parts for a CNC build.

When it comes to building on the cheap, nobody holds a candle to [HomoFaciens]. We’ve seen his garbage can CNC build and encoders from e-waste and tin cans, all of which gave surprisingly good results despite incorporating such compliant materials as particle board and scraps of plumber’s strapping. Looking to build a more robust machine, he finds himself in need of parts of consistent and accurate lengths, so he built this jig. A sled of particle board and a fence of angle aluminum position the square tube stock, and a roller with a paper encoder wheel bears on the tube under spring pressure. By counting pulses from the optical sensors, he’s able to precisely position the tube in the jig for cutting and drilling operations. See it in action in the video after the break.

If you’ve been following [HomoFaciens], you’ll no doubt see where he’s been going — build a low-end tool, use that to build a better one, and so on. We’re excited to see him moving into more robust materials, but we’ll miss the cardboard and paperclip builds.

Continue reading “Arduino And Encoder Form Precision Jig For Cutting And Drilling”

Restoring A Strange Milling Machine From Craigslist

[diyVT] found a real white elephant in this milling machine from Craigslist. It cost him only $200, cheap for a small mill, so it was worth the gamble. We’re not sure what to call this — it’s not exactly a gantry mill, not a horizontal mill, and definitely not a knee mill. The tag says V-Mill, made by either Pierce West or Tree Tool and Die Works, depending on which ID plate you read. The Tree has a three-phase motor, but it came with a phase converter, so it should be good to run on single phase 220 volt household power.

The machine was in good physical shape, at least until the previous owner attempted to move it out of the garage. During the move one of the cast iron chain drive handwheel brackets broke into three pieces. Cast iron is no fun to weld. It has to be pre-heated, welded with nickel rod, and slowly cooled. Some hackers would have given up or built a new part, but [diyVT] accepted the challenge. He put the puzzle pieces back together, grooved them out with an angle grinder, and welded everything. The result wasn’t pretty, but it only has to take the force of the handwheel and the 200 lb gorilla spinning it.

After a bit of work on the motor and head, including a new belt, this tree was ready to cut. [diyVT] snuck out of a family bar-b-que to cut his first chips on the new (to him) machine.

Continue reading “Restoring A Strange Milling Machine From Craigslist”

DIY Induction Soldering Iron

[Kasyan TV] shows us how to make a really simple DIY induction soldering iron complete with DIY soldering tips.

This is a pretty cool project. Most of us are used to temperature controlled ceramic heating elements, but there are other ways to get those irons up to temperature. Using scraps from older, presumably broken, soldering irons and some pieces of copper and iron along with a thermocouple for temperature management, [Kasyan TV] manages to throw together an Inductively heated soldering iron. To insulate the coil from the iron they use Kapton tape. The video goes on to show how to make your own induction iron, although missing is a power supply. We are sure a quick eBay search for an induction heater module should bring up something suitable to power the iron, or you could just wait and watch the their next video that will go over power supplies. The soldering tips are simply made from thick copper wire sculpted into the correct shape.

There are advantages to using a soldering iron like this, for example they are pretty durable and will take a knock or two, Our concern is that magnetically sensitive parts may not be happy, and the iron might destroy what you are trying to build. Either way we’ve put the video below the break, so take a look.

Hackaday has featured a few different DIY soldering irons and some pretty cool DIY Soldering Stations over the years. What is your soldering iron of choice and why?

Continue reading “DIY Induction Soldering Iron”

Current Sink Keeps The Smoke In

One of the most versatile tools on anyone’s work bench, at least as far as electrical projects are concerned, is a power supply. Often we build our own, but after we’ve cobbled together some banana jacks with a computer’s PSU or dead-bug soldered a LM317 voltage regulator to a wall wart, how will that power supply perform? Since it’s not desirable to use a power supply that’ll let the smoke out of everything it powers (or itself, for that matter) a constant current sink, or load, can help determine the operating limits of the power supply.

[electrobob] built this particular current sink from parts he had lying around. The theory of a constant current sink is relatively straightforward so it’s easily possible to build one from parts out of the junk drawer, provided you can find a few transistors, fuses, an op amp, and some heat sinks. The full set of schematics that [electrobob] designed can be found on his main project page. He’s also gone a step further with this build as well, since he shorted out his first prototype and destroyed some of the transistors. But, using a few extra transistors in his design also improves the safety and performance of the load, so it’s a win-win.

This constant current load also has the added feature of being able to interface with a waveform generator (an Analog Discovery, specifically) and as a result can connect and disconnect the load quickly. If you aren’t in need of an industrial-grade constant current sink and you have some spare parts lying around, this would be a great one to have around the work bench.

A Water Jet Cutter From A Cheap Pressure Washer

We’ve become used to CNC mills and 3D printers becoming staples of our workshops, and thanks to the wonders of international trade even a modest laser cutter is not beyond the reach of most experimenters. But there is one tool that has so far evaded all but either commercial operations or the extremely well-heeled, the water cutter. These machines use a high-pressure water jet, usually carrying a stream of abrasive particles, to cut through the material placed beneath them. From our perspective they are interesting in that they can cut metal, something not normally possible with the laser cutters within our reach.

A water cutter is something you might think would be impossible for an experimenter to make for themself, but [Applied Science] is on hand to disprove that notion. He’s taken a cheap pressure washer, and modified it to produce a much higher water pressure for a water cutting head.

His very detailed description of the modifications makes for an extremely interesting watch, and we’ve placed the video below the break. The higher pressure is achieved by modifying the washer’s pressure on-off switch with a newly-machined sleeve and a stronger spring. The description of how the washer switch works is interesting in itself. Then we are treated to a complete teardown of a water cutting head, with abrasive feed, tungsten carbide tube, and ruby nozzle. This last component is surprisingly cheap. He then gives us a run-down of its design, particularly with respect to choosing the size of the orifices to match the pump. Finally we take a look at his abrasive feed system, and the plastic funnel he uses to keep water flow back out of his hopper.

For now the cutter is static, but his obvious next step is to bring it to some form of CNC table. If this project brings water cutting one step closer to the masses, we can’t wait!

Continue reading “A Water Jet Cutter From A Cheap Pressure Washer”

Nitro Powered Rotary Tool

We really don’t know if the world needs it but we’re sure glad [johnnyq90] took the time to build one. We’re talking about a nitro powered rotary tool. Based on a Kyosho GX-12 nitro engine, commonly used in R/C cars, [johnnyq90] machines almost all other parts in his shop to make a really cool ‘Nitro-Dremel’. But success didn’t come at the first try.

The first prototype was made using a COX 049 engine but the lack of proper lubrication cause damage to the crankshaft. Because of this setback, [johnnyq90] swaps it out with a O.S Max 10 Aero engine he had lying around in the shop. That didn’t work out so well as the engine was quite hard to start. On the third try he finally decided to use the 2.1 cc Kyosho GX-12 engine to power up his 20.000 rpm tool. As noisy as one would expect and, from the videos it seems quite powerful too as it easily pierces through an aluminium block, cuts steel like a breeze, and breezes through other less demanding feats.

But [johnnyq90] is no stranger to nitro engines nor to Hackaday. In the past he built, among other things, a nitro powered cordless drill and showed impressive feats of machining in a micro version of a Tesla turbine. We wonder what’s next…. a nitro powered tattoo gun perhaps?

In the 20 minute video after the break, we enjoy watching the construction of the ‘Nitro-Dremel’, as well as other parts from two previously failed prototypes:

Continue reading “Nitro Powered Rotary Tool”

Making An Inexpensive DRO

[Andrew] wanted a digital readout (DRO) for his mini lathe and mini mill, but found that buying even one DRO cost as much as either of his machines. The solution? You guessed it, he built his own for cheap, using inexpensive digital calipers purchased off eBay.

The DRO he created features a touch screen with a menu system running on an LPCXpresso, while smaller OLED screens serve as labels for the 7-segment displays to the right. The DRO switches back and forth between the lathe and mill, and while the software isn’t done, [Andrew] hopes to be able to transfer measurements from one machine to the other.

In a very sweet touch, [Andrew] hacked cheap digital calipers to provide measurements for each axis, where they provide a resolution of 0.01mm. There are six daughter boards, one for each caliper, and each has a PIC that converts from serial to I2C, freeing the main firmware from dealing with six separate data streams.

The DRO doesn’t have a case, [Andrew] has it positioned out of chip-range from either machine.

A previous DRO we featured in 2012 used an Android tablet as its display.