Vacuum-Powered Rotary Tool Redux, This Time Machined

We love to see projects revisited, especially when new materials or methods make it worth giving the first design another go around. This twin-turbine vacuum-powered Dremel tool is a perfect example of what better tools can do for a build.

You may recall [JohnnyQ90]’s first attempt at a vacuum powered rotary tool. That incarnation, very similar in design to the current work, was entirely 3D-printed, and caused no little controversy in the comments about the wisdom of spinning anything made on an FDM printer at 43,000 RPM. Despite the naysaying, [Johnny] appears to have survived his own creation. But the turbo-tool did have its limitations, including somewhat anemic torque. This version, machined rather than printed and made almost completely from aluminum, seems to have solved that problem, perhaps thanks to the increased mass of the rotating parts. The twin rotors and the stator were milled with a 5-axis CNC machine, which has been a great addition to [JohnnyQ90]’s shop. The turbine shaft, looking like something from a miniature jet engine, was meticulously balanced using magnets mounted in the headstock and tailstock of a lathe. The video below shows the build and a few tests; we’re not big fans of the ergonomics of holding the tool on the end of that bulky hose, but it sure seems to work well. And that sound!

We first noticed [JohnnyQ90] when he machined aluminum from soda cans to make a mini Tesla turbine. His builds have come a long way since then, and we look forward to what he’ll come up with next.

Continue reading “Vacuum-Powered Rotary Tool Redux, This Time Machined”

Lathe’s Tool Holder Holds a Rotary Tool

What is better than a tool? Two. What is better than two? Two tools tooling together. [tintek33] wanted a rotary tool to become an attachment on his mini lathe, the video is also below the break. Fortunately, Dremels and Proxxons are built to receive accessories, or in this case, become one. Even if the exact measurements do not apply to your specific hardware, we get to see the meat of the procedure from concept to use.

We start with where the rotary tool should be and get an idea of what type of bracket will be necessary. The design phase examines the important dimensions with a sketch and then a CAD mock-up. Suitably thick material is selected, and the steps for pulling the tool from the raw stock are shown with enough detail to replicate everything yet there is no wasted time in this video. That is important if you are making a quick decision as to whether or not this is worth your hard work. Once the brace is fully functional and tested, it is anodized for the “summer ocean” blue color to make it easy to spot in the tool heap. Some complex cuts are made and shown close-up.

Thank you [jafinch78] for your comment on Take a Mini Lathe for a Spin and check out [tintek33] using his mini lathe to make a hydraulic cylinder for an RC snow plow.

Continue reading “Lathe’s Tool Holder Holds a Rotary Tool”

Roll Your Own Rotary Tool

Rotary tools are great little handheld powerhouses that fill the void between manual tools and larger shop machines. They’re also kind of expensive for what they are, which is essentially a power circuit, a switch, and a high-RPM motor with a tool coupling on the shaft. If your tooling needs are few and you have the resources, why not make your own?

[DIY King 00] built himself a cordless rotary tool for less than $10 out of commonly-available parts. It doesn’t run nearly as fast as commercial rotary tools, but that’s not necessarily a bad thing. He made the body out of 2″ diameter PVC and mounted a 12 V, 400 RPM DC motor directly to one of the fiberglass end caps. Tools are chucked into a collet that screws into a coupler on the motor shaft.

For power, [DIY King 00] built a 7.4 V battery pack by wiring two 18650 cells from an old laptop battery in series. It isn’t the full 12 V, but it’s enough power for light-duty work. These 2200 mAh cells should last a while and are rechargeable through the port mounted in the other end cap.

Drill down past the break to see the build video and watch the tool power through plywood, fiberglass, and inch-thick lumber. Once you’ve made your own rotary tool, try your hand at a DIY cordless soldering iron.

Continue reading “Roll Your Own Rotary Tool”

It’s A Wall-Mounted Dremel Workstation!

We’ve all seen Dremel drill presses, but [Tuomas Soikkeli] has created a full-fledged (albeit miniature) workstation using his Dremel as the motor. He has a gnome-sized belt sander with what appear to be skateboard wheels turning the belt, with the Dremel’s toolhead tensioning the belt and turning it as well. There’s a wee table saw, petite lathe, cute router, etc.

The Dremel attaches to the base via the 3/4-to-1/2 threaded end upon which specialized tool ends may be connected, and which DIY add-ons (like this light ring that we published previously) typical connect. Though in truth the threaded end varies in tensile strength from model to model — even the knockoffs have the same end, but is it strong enough to attach to the rig?

We like how [Tuomas] has his rig mounted to the wall. It looks like he has a couple of flexible shaft extenders nearby, allowing the rig to almost serve same role as a shop’s air tools.

Continue reading “It’s A Wall-Mounted Dremel Workstation!”

3D-Printed Turbine Rotary Tool Tops 40,000 RPM

For your high speed, low torque needs, few things beat a rotary tool like a Dremel. The electric motor has its limits, though, they generally peak out at 35,000 rpm or so. Plus there’s the dust and the chips to deal with from whatever you’re Dremeling, so why not kill two birds with one stone and build a turbine-driven rotary tool attachment for your shop vac?

Another serious shortcoming of the electric Dremels that is addressed by [johnnyq90]’s 3D-printed turbine is the lack of that dentist’s office whine. His tool provides enough of that sound to trigger an attack of odontophobia as it tops out at 43,000 rpm. The turbine’s stator and rotors are 3D-printed, as is the body, inlet scoop, and adapter for the vacuum line. A shaft from an old rotary tool is reused, but a new one could be turned pretty easily. The video below shows the finished tool in action; there’ll no doubt be objections in the comments to ingesting dust, chips, and incandescent bits of metal, but our feeling is that the turbine will hold up to these challenges pretty well. Until it doesn’t, that is.

We like [johnnyq90]’s design style, which you may recall from his micro Tesla turbine or nitro-powered rotary tool. He sure likes things that spin fast.

Continue reading “3D-Printed Turbine Rotary Tool Tops 40,000 RPM”

Nitro Powered Rotary Tool

We really don’t know if the world needs it but we’re sure glad [johnnyq90] took the time to build one. We’re talking about a nitro powered rotary tool. Based on a Kyosho GX-12 nitro engine, commonly used in R/C cars, [johnnyq90] machines almost all other parts in his shop to make a really cool ‘Nitro-Dremel’. But success didn’t come at the first try.

The first prototype was made using a COX 049 engine but the lack of proper lubrication cause damage to the crankshaft. Because of this setback, [johnnyq90] swaps it out with a O.S Max 10 Aero engine he had lying around in the shop. That didn’t work out so well as the engine was quite hard to start. On the third try he finally decided to use the 2.1 cc Kyosho GX-12 engine to power up his 20.000 rpm tool. As noisy as one would expect and, from the videos it seems quite powerful too as it easily pierces through an aluminium block, cuts steel like a breeze, and breezes through other less demanding feats.

But [johnnyq90] is no stranger to nitro engines nor to Hackaday. In the past he built, among other things, a nitro powered cordless drill and showed impressive feats of machining in a micro version of a Tesla turbine. We wonder what’s next…. a nitro powered tattoo gun perhaps?

In the 20 minute video after the break, we enjoy watching the construction of the ‘Nitro-Dremel’, as well as other parts from two previously failed prototypes:

Continue reading “Nitro Powered Rotary Tool”

Make a PVC Drill Press

There are two types of people in this world: people who think that PVC is only suitable for plumbing, and people who don’t even know that you can use PVC to carry water. Instructables user [amjohnny] is clearly of the latter school. His PVC Dremel drill press is a bit of an oldie, but it’s still a testament to the pipefitter’s art. And you can watch it in action in the video embedded below.

Things we particularly like about this build include the PVC parallelogram movement, springs around tubes to push the Dremel head back up, and the clever use of a T-fitting and screw plug to hold the press in its lowest position. We wonder how one could add a depth stop to this thing. No matter, we love watching it work.

Anyway, this is just one hack of many that emphasizes the importance of a drill press in basically anyone’s life, as well as the ease of DIY’ing into one. If you’re in the PVC-haters camp, but have some scrap wood and drawer slides or plastic offcuts lying around, you have the makings of a rudimentary press — a welcome tool in the shop.

Continue reading “Make a PVC Drill Press”