Handheld 18650 Analyzer Scopes Out Salvaged Cells

You can salvage lithium 18650 cells from all sorts of modern gadgets, from disposable vapes to cordless power tools. The tricky part, other than physically liberating them from whatever they are installed in, is figuring out if they’re worth keeping or not. Just because an 18650 cell takes a charge doesn’t necessarily mean it’s any good — it could have vastly reduced capacity, or fail under heavy load.

If you’re going to take salvaging these cells seriously, you should really invest in a charger that is capable of running some capacity tests against the cell. Or if you’re a bit more adventurous, you can build this “Battery Health Monitor” designed by [DIY GUY Chris]. Although the fact that it can only accept a single cell at a time is certainly a limitation if you’ve got a lot of batteries to go though, the fact that it’s portable and only needs a USB-C connection for power means you can take it with you on your salvaging adventures.

The key to this project is a pair of chips from Texas Instruments. The BQ27441 is a “Fuel Gauge” IC, and is able to determine an 18650’s current capacity, which can be compared to the cell’s original design capacity to come up with an estimate of its overall health. The other chip, the BQ24075, keeps an eye on all the charging parameters to make sure the cell is being topped up safely and efficiently.

With these two purpose-built chips doing a lot of the heavy lifting, it only takes a relatively simple microcontroller to tie them together and provide user feedback. In this case [DIY GUY Chris] has gone with the ATmega328P, with a pair of addressable WS2812B LED bars to show the battery’s health and charge levels. As an added bonus, if you plug the device into your computer, it will output charging statistics over the serial port.

The whole project is released under the MIT license, and everything from the STL files for the 3D printed enclosure to the MCU’s Arduino-flavored firmware is provided. If you’re looking to build one yourself, you can either follow along with the step-by-step assembly instructions, or watch the build video below. Or really treat yourself and do both — you deserve it.

If your battery salvaging operation is too large for a single-cell tester, perhaps it’s time to upgrade to this 40-slot wall mounted unit.

Continue reading “Handheld 18650 Analyzer Scopes Out Salvaged Cells”

Software Hacks Unlock Cheap Spectrometer

A spectrometer is one of those tools that many of us would love to have, but just can’t justify the price of. Sure there are some DIY options out there, but few of them have the convenience or capability of what’s on the commercial market. [Chris] from Zoid Technology recently found a portable spectrometer complete with Android application for just $150 USD on AliExpress which looked very promising…at least at first.

The problem is that the manufacturer, Torch Bearer, offers more expensive models of this spectrometer. In an effort to push users into those higher-priced models, arbitrary features such as data export are blocked in the software. [Chris] first thought he could get around this by reverse engineering the serial data coming from the device (interestingly, the spectrometer ships with a USB-to-serial adapter), but while he got some promising early results, he found that the actual spectrometer data was obfuscated — a graph of the results looked like stacks of LEGOs.

Continue reading “Software Hacks Unlock Cheap Spectrometer”

How To Make A 13 Mm Hole With A 1/2″ Drill Bit

As everyone knows, no matter how many drill bits one owns, one inevitably needs a size that isn’t on hand. Well, if you ever find yourself needing to drill a hole that’s precisely 13 mm, here’s a trick from [AvE] to keep in mind for doing it with a 1/2″ bit. It’s a hack that only works in certain circumstances, but hey, it just may come in handy some day.

So the first step in making a 13 mm hole is to drill a hole with a 1/2″ bit. That’s easy enough. Once that’s done, fold a few layers of tinfoil over into a small square and lay it over the hole. Then put the drill bit onto the foil, denting it into the hole (but not puncturing it) with the tip, and drill at a slow speed until the foil wraps itself around the bit like a sheath and works itself into the hole. The foil enlarges the drill bit slightly and — as long as the material being drilled cooperates — resizes the hole a tiny bit bigger in the process. The basic idea can work with just about any drill bit.

It’s much easier demonstrated than described, so watch it in action in the video around the 2:40 mark which will make it all very clear.

It’s not the most elegant nor the most accurate method (the hole in the video actually ends up closer to 13.4 mm) but it’s still something worth keeping in the mental toolbox. Just file it away along with laying your 3D printer on its side to deal with tricky overhangs.

Continue reading “How To Make A 13 Mm Hole With A 1/2″ Drill Bit”

Half The Reflow Oven You Expected

Toaster oven reflow projects are such a done deal that there should be nothing new in one here in 2025. Take a toaster oven, an Arduino, and a thermocouple, and bake those boards! But [Paul J R] has found a new take on an old project, and better still, he’s found the most diminutive of toaster ovens from the Australian version of Kmart. We love the project for the tiny oven alone.

The brains of the operation is an ESP32, in the form of either a TTGO TTDisplay board or an S3-Zero board on a custom carrier PCB, with a thermistor rather than a thermocouple for the temperature sensing, and a solid state relay to control mains power for the heater. All the resources are in a GitHub repository, but you may have to make do with a more conventionally-sized table top toaster oven if you’re not an Aussie.

If you’re interested, but want a better controller board, we’ve got you covered.

Metal Detector Built With Smartphone Interface

If you think of a metal detector, you’re probably thinking of a fairly simple device with a big coil and a piercing whine coming from a tinny speaker. [mircemk] has built a more modern adaptation. It’s a metal detector you can use with your smartphone instead.

The metal detector part of the project is fairly straightforward as far as these things go. It uses the pulse induction technique, where short pulses are fired through a coil to generate a magnetic field. Once the pulse ends, the coil is used to detect the decaying field as it spreads out. The field normally fades away in a set period of time. However, if there is metal in the vicinity, the time to decay changes, and by measuring this, it’s possible to detect the presence of metal.

In this build, an ESP32 is in charge of the show, generating the necessary pulses and detecting the resulting field. It’s paired with the usual support circuitry—an op-amp and a few transistors to drive the coil appropriately, and the usual smattering of passives. The ESP32 then picks up the signal from the coil and processes it, passing the results to a smartphone via Bluetooth.

The build is actually based on a design by [Neco Desarrollo], who presents more background and other variants for the curious. We’ve featured plenty of [mircemk]’s projects before, like this neat proximity sensor build. Continue reading “Metal Detector Built With Smartphone Interface”

Rolling Foam Cutter Gives Mattress A Close Shave

There’s many different reasons why somebody might have to hack together their own solution to a problem. It could be to save money, or to save time. Occasionally it’s because the problem is unique enough that there might not be an accepted solution, so you’re on your own to create one. We think the situation that [Raph] recently found himself in was a combination of several of these aspects, which makes his success all the sweeter.

The problem? [Raph] had a pair of foam mattresses from his camper van that needed to be made thinner — each of the three inch (7.62 cm) pieces of foam needed to have one inch (2.5 cm) shaved off as neatly and evenly as possible. Trying to pull that off over the length of a mattress with any kind of manual tools was obviously a no-go, so he built a low-rider foam cutter.

With the mattresses laying on the ground, the idea was to have the cutter simply roll across them. The cutter uses a 45″ (115 cm) long 14 AWG nichrome wire that’s held in tension with a tension arm and bungee cords, which is juiced up with a Volteq HY2050EX 50 V 20 A variable DC power supply. [Raph] determined the current experimentally: the wire failed at 20 A, and cutting speed was too low at 12 A. In the end, 15 A seemed to be the sweet spot.

The actual cutting process was quite slow, with [Raph] finding that the best he could do was about 1/8″ (3 mm) per second on the wider of the two mattresses. While the result was a nice flat cut, he does note that at some point the mattresses started to blister, especially when the current was turned up high. We imagine this won’t be a big deal for a mattress though, as you can simply put that side on the bottom.

In the end, the real problem was the smell. As [Raph] later discovered, polyurethane foam is usually cut mechanically, as cutting it with a hot wire gives off nasty fumes. Luckily he had plenty of ventilation when he was making his cuts, but he notes that the mattresses themselves still have a stink to them a couple days later. Hopefully they’ll finish outgassing before his next camping trip.

As you can imagine, we’ve covered a great number of DIY foam cutters over the years, ranging from the very simple to computerized marvels. But even so, there’s something about the project-specific nature of this cutter that we find charming.

Aluminum Business Cards Make Viable PCB Stencils

[Mikey Sklar] had a problem—namely, running low on the brass material typically used for making PCB stencils. Thankfully, a replacement material was not hard to find. It turns out you can use aluminum business card blanks to make viable PCB stencils.

Why business card blanks? They’re cheap, for a start—maybe 15 cents each in quantity. They’re also the right thickness, at just 0.8 mm 0.18 mm, and they’re flat, unlike rolled materials that can tend to flip up when you’re trying to spread paste. They’re only good for small PCBs, of course, but for many applications, they’ll do just fine.

To cut these, you’ll probably want a laser cutter. [Mikey] was duly equipped in that regard already, which helped. Using a 20 watt fiber laser at a power of 80%, he was able to get nice accurate cuts for the stencils. Thanks to the small size of the PCBs in question, the stencils for three PCBs could be crammed on to a single card.

If you’re not happy with your existing PCB stencil material, you might like to try these aluminium blanks on for size. We’ve covered other stenciling topics before, too.

Continue reading “Aluminum Business Cards Make Viable PCB Stencils”