ARM Programming On Mars

Before you overreact to the title, keep in mind the latest version of Eclipse is code named “Mars.” It is always a bit of a challenge to set up a generic ARM tool chain. If you don’t mind sticking to one vendor, shelling out a lot of money, or using Web-based tools, then you might not have this problem. But getting all the tools together can be annoying, at best.

[Erich Styger] works with students and knows they often stumble on just this step so he’s provided clear documentation for getting Eclipse, the ARM gcc compiler, and a full set of tools installed. He focuses on Windows and the Kinetis platform, but the steps are virtually the same regardless. Just get the right tools for your operating system and skip the Kinetis-specific parts if you don’t need them.

Continue reading “ARM Programming On Mars”

Phone Scope Build Uses Old Optical Drive

It is hardly news that you can use your smart phone as a really crummy oscilloscope. You can even use it as an audio frequency signal generator. There are also plenty of projects that allow you to buffer signals going in and out of your phone to make these apps more useful and protect your phone’s circuitry to some degree. What caught our eye with [loboat’s] phone oscilloscope project was its construction.

Continue reading “Phone Scope Build Uses Old Optical Drive”

Aerogel Insulation For 3D Printers

A heated bed is nearly essential for printing with ABS. Without it, it is difficult to keep parts from warping as the plastic cools. However, heating up a large print bed is difficult and time consuming. It is true that the printer easily heats the hot end to 200C or higher and the bed’s temperature is only half of that. However, the hot end is a small insulated spot and the bed is a large flat surface. It takes a lot of power and time to heat the bed up and keep the temperature stable.

We’ve used cork and even Reflectix with pretty good results. However, [Bill Gertz] wasn’t getting the performance he wanted from conventional material, so he got a piece of aerogel and used it as insulation. Aerogel material is a gel where a gas replaces the liquid part of the gel. Due to the Knudsen effect, the insulating properties of an aerogel may be greater than the gas it contains.

Continue reading “Aerogel Insulation For 3D Printers”

Understanding Surface Mount

Do you know what a MELF is (and, yes, it is safe for work to Google it)? What’s the difference between a QFP, and LCC, and a PLCC package? Do you need a 0603 resistor or a 1206 resistor?

If you are an old hand at surface mount devices (SMDs) you probably know the answers to most of these questions. But if you’ve done most of your work with through hole, it is a confusing mess of acronyms and numbers. Sure, you can Google and find out that at 0603 resistor is .06 inches by .03 inches. [TopLine] has a great booklet that pulls many common definitions in one place available for download that can help you make sense of different SMD nomenclature.

Continue reading “Understanding Surface Mount”

Using LTSpice To Measure Total Harmonic Distortion

Audiophiles spend a lot of time and effort worrying about audio specs like Total Harmonic Distortion (THD). Makes sense, because THD affects the quality of audio reproduction. However, THD can also affect interference from radio signals and even losses in power transfer systems. A simplified definition is the THD is the ratio of the sum of the power of all harmonic frequencies to the power of the fundamental frequency.

If a circuit produced a perfect sine wave, there would be no harmonics. There are many ways to measure THD in practice, but [Michael Jackson] has an interesting video showing how he easily visualizes THD using LTSpice. Assuming you already have the system in question in LTSpice (or you could use another simulation tool, if you prefer) it is fairly straightforward.

Continue reading “Using LTSpice To Measure Total Harmonic Distortion”

3D Objects From A Laser Cutter

Actors want to be singers and singers want to be actors. The hacker equivalent to this might be that 3D printers want to be laser cutters or CNC machines and laser cutters want to be 3D printers. When [Kurt] and [Lawrence] discovered their tech shop acquired a 120 Watt Epilog Fusion laser cutter, they started thinking if they could coax it into cutting out 3D shapes. That question led them to several experiments that were ultimately successful.

The idea was to cut away material, rotate the work piece, and cut some more in a similar way to how some laser cutters handle engraving cylindrical objects. Unlike 3D printing which is additive, this process is subtractive like a traditional machining process. The developers used wood as the base material. They wanted to use acrylic, but found that the cut away pieces tended to stick, so they continued using wood. However, the wood tends to char as it is cut.

In the end, they not only had to build special jigs and electronics, they also had to port some third party control software to solve some issues with the Epilog Fusion cutter’s built in software. The final refinement was to use the laser’s raster mode to draw surface detail on the part.

The results were better than you’d expect, and fairly distinctive looking. We’ve covered a similar process that made small chess pieces out of acrylic using two passes. This seems like a natural extension of the same idea. Of course, there are very complicated industrial machines that laser cut in three dimensions (see the video below), but they are not in the same category as the typical desktop cutter.

Continue reading “3D Objects From A Laser Cutter”

A Tale Of Three Soldering Iron Controllers

[ZL2PD] needed to replace an old Weller soldering station and decided not to go with one of the cheap soldering stations you can find all over the Internet. He has a long story about why he had to design his own controller, but you never have to explain that to us. He kept detailed notes of his journey and in the end, he built three different controllers before settling on one.

He started with a Hakko hand piece that uses a thermistor for temperature measurements. The first iteration of the controller had analog controls. He wasn’t happy with the number of parts in the design and the simple LED display. That led him to replace the controller with an ATTiny CPU and a use a serial LCD.

Continue reading “A Tale Of Three Soldering Iron Controllers”