ITman496 in his ATV, using the trashcan lifter to lift a trashcan up in the air. The lifter is a contraption mounted to the front of his ATV, welded together with square tubing

Equipping An ATV With A Trashcan Lifter

[ITman496] is one of us hackers working his way around health problems, in his case, a back injury. He is eager to solve various difficulties he has to deal with, and in case of the video he made, it was about moving a large trashcan through ice-covered roads on his property. Not willing to risk his health any further and dissatisfied with the flimsy solutions for sale requiring him to do the heavy lifting, still, he designed and built a winch-powered trashcan lifter mechanism – not entirely unlike a forklift. He mounted it to his ATV, tested it, improved upon it, filming his progress along the way – and then made a video detailing the entire build for us!

Having sketched the concept on his phone, he modeled and tested it in SketchUp, then cut and welded the parts, describing a welding alignment trick along the way – using 3D-printed joints to hold the two parts-to-be-welded together for tack welds, ensuring nigh-perfect alignment. Initial testing was a success! From there, he describes a good few surprising but in retrospect expected ease-of-use improvements that didn’t crop up during simulations, like adding chamfers to the scoop, so that he doesn’t have to angle his ATV super precisely to pick the trashcan up. In the end, having used it for about a month now, he tells us it’s been working extremely well for his purposes!

Not all such garbage cans need to be taken out, thankfully – some of them go voluntarily, and you can even get smaller ones that catch stuff you throw from across the room. We’ve covered the adventures of [ITman496] before, learning lessons from a failed robot build in 2016., and adopting an ultralight plane in 2018!

Continue reading “Equipping An ATV With A Trashcan Lifter”

The dash of Xiaomi Mi 1S scooter, with the top panel taken off and an USB-UART adapter connected to the dashboard, sniffing the firmware update process

Xiaomi Cryptographically Signs Scooter Firmware – What’s Next?

[Daljeet Nandha] from [RoboCoffee] writes to us, sharing his research on cryptographic signature-based firmware authenticity checks recently added to the Xiaomi Mi scooter firmware. Those scooters use an OTA firmware update mechanism over BLE, so you can update your scooter using nothing but a smartphone app – great because you can easily get all the good new features, but suboptimal because you can easily get all the bad new features. As an owner of a Mi 1S scooter but a hacker first and foremost, [Daljeet] set up a HTTPS proxy and captured the firmware files that the app downloaded from Xiaomi servers, dug into them, and summarized what he found.

Scooter app firmware update dialog, saying "New firmware update available. Update now?"
Confirming this update will indefinitely lock you out of any third-party OTA updates

Unlike many of the security measures we’ve seen lacking-by-design, this one secures the OTA firmware updates with what we would consider the industry standard – SHA256 hash with elliptic cryptography-backed signing. As soon as the first firmware version implementing signature checks is flashed into your scooter, it won’t accept anything except further firmware binaries that come with Xiaomi’s digital signature. Unless a flaw is found in the signature checking implementation, the “flash a custom firmware with a smartphone app” route no longer seems to be a viable pathway for modding your scooter in ways Xiaomi doesn’t approve of.

Having disassembled the code currently available, [Daljeet] tells us about all of this – and more. In his extensive writeup, he shares scripts he used on his exploration journey, so that any sufficiently motivated hacker can follow in his footsteps, and we highly recommend you take a look at everything he’s shared. He also gives further insights, explaining some constraints of the OTA update process and pointing out a few security-related assumptions made by Xiaomi, worth checking for bypassing the security implemented. Then, he points out the firmware filenames hinting that, in the future, the ESC (Electronic Speed Control, responsible for driving the motors) board firmware might be encrypted with the same kind of elliptic curve cryptography, and finds a few update hooks in the decompiled code that could enable exactly that in future firmware releases.

One could argue that these scooters are typically modified to remove speed limits, installed there because of legal limitations in a variety of countries. However, the legal speed limits are more nuanced than a hard upper boundary, and if the hardware is capable of doing 35km/h, you shouldn’t be at mercy of Xiaomi to be able to use your scooter to its full extent where considerate. It would be fair to assert, however, that Xiaomi did this because they don’t want to have their reputation be anywhere near “maker of scooters that people can modify to break laws with”, and therefore we can’t expect them to be forthcoming.

Furthermore, of course, this heavily limits reuse and meaningful modification of the hardware we own. If you want to bring a retired pay-to-ride scooter back to usefulness, add Bluetooth, or even rebuild the scooter from the ground up, you should be able to do that. So, how do we go around such restrictions? Taking the lid off and figuring out a way to reflash the firmware through SWD using something like a Pi Pico, perhaps? We can’t wait to see what hackers figure out.

Riding Mower CVT Upgrade Really Gets Things Moving

As we’ve learned from past experience, videos from [HowToLou] tend to be a bit controversial. His unique style of expedient engineering isn’t everyone’s cup of tea, especially when it’s combined with a devil-may-care attitude towards safety. On the other hand, there’s no arguing that his methods get results. His video on converting an 18 HP riding mower into something akin to a go-kart is a perfect example.

The first phase of the project involves removing all the hardware related to mowing, as obviously you won’t be cutting any grass while pushing speeds of 48 kph (30 mph). This both saves weight, and removes a lot of mechanical complication that would be in the way of further modification. That said, it also leaves the mower immobile, as there’s no longer be any connection between the engine and transaxle.

The new drivetrain features some beefy bracing.

In its place, [HowToLou] installs an off-the-shelf torque converter kit that uses a continuously variable transmission (CVT) clutch. As he quickly demos, the CVT technology allows the gear ratio to automatically adapt to the engine RPM thanks to pulleys that change their size depending on how fast they’re spinning. It’s a big improvement over the system he originally yanked out, though as you might expect, fitting it into the mower required some custom work. The final step was to pull the old pulley off of the transaxle and replace it with one that’s less than half the original size.

Wearing his protective flip-flops, [HowToLou] hops on the souped-up mower and is nearly thrown off the back of it as soon as he steps on the gas. Clearly the modifications were a success, and the video ends with some open road testing — presumably he’s riding off to the store to go buy a helmet.

We actually missed this video when it first made the rounds, but it has since picked up steam and is pulling in some impressive numbers. [HowToLou] tells us he thinks it’s due to the fact that a lot of people are upgrading to more modern zero-turn mowers, meaning there’s a surplus of these second-hand mini tractors on the market. Whatever the reason, we’re happy to see this backyard engineer get some mainstream success; his methods might not always be by the book, but they’re always entertaining.

Continue reading “Riding Mower CVT Upgrade Really Gets Things Moving”

Hoverbike Turns Hoverboard Into Ebike

Hoverboards were a popular trend with the youths and in-crowd a few years ago, and now that the fad has largely died out there are plenty of them sitting unused in closets and basements around the world. That only means opportunities to put the parts from these unique transportation devices into other builds. A more practical method of transportation is a bicycle, and this build scavenges most of the parts from a hoverboard to turn a regular bicycle into a zippy ebike.

This bike build starts with a mountain bike frame and the parts from the hoverboard are added to it piece by piece. The two motors are mounted to the frame and drive the front chain ring of the bike, allowing it to still take advantage of the bike’s geared drivetrain. Battery packs from two hoverboards were combined into a single battery which give the bike a modest 6-10 km of range depending on use. But the real gem of this build is taking the gyroscopic controller board from the hoverboards and converting it, with the help of an Arduino Due, to an ebike controller.

Eventually a battery pack will be added to give the bike a more comfortable range, but for now we appreciate the ingenuity that it took to adapt the controller from the hoverboard into an ebike controller complete with throttle and pedal assist. For other household objects turned into ebikes, be sure to check out one of our favorites based on a washing machine motor: the Spin Cycle.

Does Your Programmer Know How Fast You Were Going?

News reports were everywhere that an autonomous taxi operated by a company called Cruise was driving through San Francisco with no headlights. The local constabulary tried to stop the vehicle and were a bit thrown that there was no driver. Then the car moved beyond an intersection and pulled over, further bemusing the officers.

The company says the headlights were due to human error and that the car had stopped at a light and then moved to a safe stop by design. This leads to the question of how people including police officers will interact with robot vehicles.

Continue reading “Does Your Programmer Know How Fast You Were Going?”

This Chariot Is Pulled By A Team Of Motorcycles

We’re fans of unusual forms of transport here, so when we saw an article featuring a home-made motorcycle chariot we knew we had to share it with you. You’ll probably notice it comes from the keyboard of our colleague [Lewin Day] as he moonlights writing for The Drive, and he’s brought along a lot of context and history to the dual-Husqvarna chariot built by [Jack Field].

The machine itself is a chariot in the ancient Roman fashion, a two-wheeled platform on which the rider stands and holds the reins. Instead of a team of horses though there is the aforementioned pair of Husqvarna motorcycles, and a pair of rods to their handlebars with throttle and brake controls take the place of reins. It’s fair to say that this might not be the least hazardous of conveyances, but it appears both rideable and controllable, and will appear at motorcycle shows. truth be told we’d like to have a go ourselves, but since it’s in Australia we think there’s little chance. Unexpectedly the motorcycle chariot is not a new idea, with their being used for full-scale races back in the 1930s. There’s a trip into that world with some exciting but lethal-looking racing action to view, but it seems that these machines exist here in 2022 mostly for show.

This isn’t the first machine operated by reins we’ve brought you, how about a rein-operated tractor?

Hacking A Fuel Sensor Into A Portable Tank, Literally

Regular readers of Hackaday will know that the projects we feature are generally of the high-tech variety. Microcontrollers, 3D printed parts, embedded Linux, lots of wires, that sort of thing. But that’s not to say we don’t appreciate the somewhat more visceral builds out there; after all, hacking is about creative problem solving and thinking outside the box, and none of that is limited to how complex the fix actually is.

Take for example this quick hack that [R. Preston McAfee] recently sent our way. Looking for a way to check how much fuel was left in his outboard motor’s small portable gas tank without crawling back to look at it, he decided to rig it up with a sending unit. While they’re technically designed for larger tanks which are permanently installed into a boat’s hull, he reasoned there was nothing about the float sensor that would keep it from working in his case so long as it could be safely mounted.

To that end, [Preston] started by cutting a 38 mm (1.5″) hole in the thickest part of the tank, and sanded the area around the opening to smooth things out. He then measured the depth of the tank at that point, and ordered an appropriately sized float sensor. He drilled out the holes for the five mounting bolts, and inserted them through the larger whole so their heads would be inside the tank. By holding the exposed threads with a pair of vice grips he was able to crank the nuts down on each bolt to form a tight seal to the gasket, though it should be noted that the resulting damage to the threads will likely make it difficult to remove the nuts in the future.

Admittedly this is a pretty simple fix, but it’s well thought-out and we appreciate the effort [Preston] put in to documenting the whole process. We’ve certainly covered more elaborate ways of seeing what’s left in the tank, but just because a solution is flashier doesn’t mean it’s necessarily any better.