Souped-Up, Next Gen Wearables

The biggest hurdle to great advances in wearable technology is the human body itself. For starters, there isn’t a single straight line on the thing. Add in all the flexing and sweating, and you have a pretty difficult platform for innovation. Well, times are changing for wearables. While there is no stock answer, there are some answers in soup stock.

A group of scientists at Stanford University’s Bao Lab have created a whisper thin co-polymer with great conductivity. That’s right, they put two different kinds of insulators together and created a conductor. The only trouble was that the resulting material was quite rigid. With the help of some fancy x-ray equipment, they discovered that adding a molecule found in standard industrial soup thickeners stops the crystallization process of the polymers, leaving them flexible and stretchy. Get this: the material conducts even better when stretched.

The scientists have used the material to make both simple, transparent electrodes as well as entire flexible transistor arrays with an inkjet printer. They hope to influence next generation wearable technology for everything from smart clothing to medical devices. Who knows, maybe they can team up with the University of Rochester and create a conducting co-polymer that can also shape-shift. Check out a brief demonstration after the break.

Continue reading “Souped-Up, Next Gen Wearables”

Shoelace Locks Keep Your Fancy Footwear Firmly Attached

Remember the 1980s, when velcro sneakers were the hip new thing? (Incidentally, VELCRO® is a registered trademark for VELCRO® brank hook-and-loop fasteners but we use it here as a general term for the fastening technology). Only the coolest kids in school had a fresh pair of Zips. Velcro left a bit to be desired though. The hooks and loops would wear out, and the sneakers always seemed to pop apart at the worst possible moments — like when running or jumping. These days, velcro seems to be relegated to the elderly, which gives it the stigma of “old people shoes”.

So what is an aspiring hacker to do, just tie their shoelaces like a simple plebe? [Pentland_Designs] has the answer with his shoelace locks. The design is his take on the classic plastic clip found on backpacks and jackets. [Pentland_Designs] has added a twist though — a “button” which flexes a plastic ring, releasing the main body of the clip. This means the user doesn’t have to bend down when taking off their shoes. This isn’t just good for folks with disabilities. Anyone with back problems will tell you that avoiding a couple of deep bends at the end of the day helps a lot.

Check out the video of [Pentland_Designs] Shoelace locks after the break. For more shoe-tech, check out these LEGO self-lacing shoes, or this teardown of Nike’s self-lacing offering.

Continue reading “Shoelace Locks Keep Your Fancy Footwear Firmly Attached”

Creepy Tracking At The House Of Mouse

If it’s been a few years since you’ve been to Disney World, you’re in for a surprise on your next visit. It seems the Happiest Place on Earth has become the Trackiest Place on Earth thanks to the Disney MagicBand, a multipurpose wristband that acts as your pass to all the Disney magic.

[Adam] recently returned from a Disney vacation and brought back his MagicBand, which quickly went under the knife for a peek at the magic inside. It turns out the technology is fairly mundane — a couple of flex PCBs with trace antennas and the usual trappings of an RFID transponder. But there’s also another antenna and a chip identified in a separate teardown as an NRF24LE1 2.4 GHz transceiver and microcontroller. The whole thing is powered by a coin cell, meaning the band isn’t just being interrogated by RFID – it’s actively transmitting and receiving.

What exactly it’s doing isn’t clear; Disney was characteristically cagey about specifics when [Adam] looked into the details, saying only that the bands “provide information that helps us improve the overall experience in our parks”. If you put aside the privacy concerns, it’s truly mind-boggling to think about the systems that must be in place to track thousands of these MagicBands around the enormous Disney property. And we can’t help but wonder if some of Disney R&D’s EM-Sense technology is at work in these wearables.

Thanks to [JohnU] for the tip.

“Norman, Coordinate!”

If Star Trek taught us anything, it’s clearly that we’re not quite in the future yet. Case in point: androids are not supposed to be little flecks of printed circuits with wires and jacks sprouting off them. Androids are supposed to be gorgeous fembots in polyester kimonos with beehive hairdos, designed to do our bidding and controlled by flashing, beeping, serial number necklaces.

Not willing to wait till the 23rd century for this glorious day, [Peter Walsh] designed and built his own android amulet prop from the original series episode “I, Mudd.” There’s a clip below if you need a refresher on this particularly notable 1967 episode, but the gist is that the Enterprise crew is kidnapped by advanced yet simple-minded androids that can be defeated by liberal doses of illogic and overacting.

The androids’ amulets indicate when they BSOD by flashing and beeping. [Peter]’s amulet is a faithful reproduction done up in laser-cut acrylic with LEDs and a driver from a headphone. The leads for the amulet go to a small control box with a battery pack and the disappointing kind of Android, and a palmed microswitch allows you to indicate your current state of confusion.

You’ll be sure to be the hit of any con with this one, although how to make smoke come out of your head is left as an exercise for the reader. Or if you’d prefer a more sophisticated wearable from The Next Generation, check out this polished and professional communicator badge. Both the amulet and the communicator were entries in the Hackaday Sci-Fi contest.

Continue reading ““Norman, Coordinate!””

Keep The Peace In The Bedroom With A Snore Stopping Sleep Mask

Despite what my wife says, I have absolutely no evidence that I snore. After all, I’ve never actually heard me snoring. But I’ll take her word for it that I do, and that it bothers her, so perhaps I should be a sport and build this snore-detecting vibrating sleep mask so she can get a few winks more.

Part wearable tech and part life hack, [mopluschen]’s project requires a little of the threadworker’s skill. The textile part of the project is actually pretty simple, and although [mopluschen] went with a custom mask made from fabric and foam shoulder pads, it should be possible to round up a ready-made mask that could be easily modified. The electronics are equally simple – an Arduino with a sound sensor module and a couple of Lilypad Vibe boards. The mic rides just above the snore resonating chamber and the vibrators are right over the eyes. When your snore volume exceeds a preset threshold, the motors wake you up.

Whether this fixes the underlying problem or just evens the score with your sleep partner is debatable, but either way there’s some potential here. And not just for snore-correction – a similar system could detect a smoke alarm and help rouse the hearing impaired. But if the sewing part of this project puts you off, you should probably check out [Jenny List]’s persuasive argument that sewing is not just for cosplayers anymore.

Chronio DIY Watch: Slick And Low Power

[Max K] has been testing the battery life of his self-designed watch under real-world conditions. Six months later, the nominally 3 V, 160 mAh CR2025 cell is reading 2.85 V, so the end is near, but that’s quite a feat for a home-engineered smart watch.

We’ve tipped our hats to the Chronio before in this Hacklet, but now that the code is available, as well as the sweet 3D-printed case files, it’s time to make your own. Why? It looks sweet, it plays a limited version of Flappy Bird (embedded below), and six month’s on a button cell is a pretty great accomplishment, considering that it’s driving a 96×96 pixel LCD display.

The Chronio is more than inspired by the Pebble watch — he based his 3D model directly on theirs — so that’s bound to draw comparisons. The Pebble is color, and has Bluetooth and everything else under the sun. But after a few weeks away from a power socket, ask a Pebble wearer what time it is. Bazinga!

Continue reading “Chronio DIY Watch: Slick And Low Power”

Building A Replica Of An Ultraluxury Watch

In the world of late-stage capitalism, unchecked redistribution of wealth to the upper classes has led to the development of so-called ultraluxury watches. Free from any reasonable constraints on material or R&D cost, manufacturers are free to explore the outer limits of the horological art. [Karel] is an aspiring engineer and watch enthusiast, and has a taste for the creations of Urwerk. They decided to see if they could create a replica of the UR202 watch with nothing more than the marketing materials as a guide.

[Karel]’s first job was to create a model of the watch in CAD. For a regular watch this might be simple enough, but the UR202 is no run-of-the-mill timepiece. It features a highly irregular mechanism, full of things like a turbine regulated winding mechanism, telescoping rods instead of minute hands, and tumbling rotors to indicate the hours. The official product sheet bears some of these features out. Through careful analysis of photos and watching videos frame-by-frame, they managed to recreate what they believe to be a functioning mechanical model within their CAD software.

It was then time to try and build the timepiece for real. It was then that [Karel] started hitting some serious stumbling blocks. As a humble engineering student, it’s not often possible to purchase an entire machine shop capable of turning out the tiny, precision parts necessary to make even a basic watch mechanism. Your basic 3D printer squirting hot plastic isn’t going to cut it here. Farming out machining wasn’t an option as the cost would be astronomical. [Karel] instead decided on combining a Miyota movement with a machined aluminum base plate and parts 3D printed using a process known as “Multijet Modelling” which essentially is an inkjet printhead spitting out UV curable polymer.

In the end, [Karel] was able to get just the tumbling hour indicator working. The telescoping minute hand, compressed air turbine winding system, and other features didn’t make it into the build. However, the process of simulating these features within a CAD package, as well as manufacturing a semi-functional replica of the watch, was clearly a powerful learning experience. [Karel] used their passion to pursue a project that ended up giving them a strong grasp of some valuable skills, and that is something that is incredibly rewarding.

We’ve seen others trying to fabricate parts of a wristwatch at home. Keep your horological tips coming in!

[Thanks to Str Alorman for the tip!]