RFID Jacket Flashes The Crowd At Make Fashion 2014

RFID-DRESS

The [RADLab team] has created an eye-opening RFID jacket for Make Fashion 2014. For this project, [Dan Damron, Chris Zaal, and Ben Reed] of RADLab teamed up with designer [Laura Dempsey] to create a jacket which responded both to a dancer on the runway and the audience itself. RADLab stands for Radio Frequency Identification Application Development Lab, so you can probably guess that RFID was their weapon of choice for interaction. We’ve got a bit of RFID experience here at Hackaday, having recently used it at The Gathering in LA. The [RADLab team] didn’t skimp on processing power for this jacket. A BeagleBone Black running Debian controls the show. The BeagleBone receives data from a Thingmagic M6e 4 port UHF RFID Reader. The M6e is connected to 4 directional antennas. The BeagleBone responds differently depending on which RFID card is read, and which antenna reads it. With the data processed, the BeagleBone then issues commands to a teensy 3.0, which controls  WS2811 “Neopixel” addressable RGB LEDs sewn into the jacket.

During the fashion show, the jacket wearer danced with a second model who had RFID tags sewn into his t-shirt. The LED clusters on the front, back and sleeves of the jacket would light up, and change color and flash frequency based upon which tag and antenna got a read. Once the performance was over, the audience was encouraged to pick up tags and interact with the jacket themselves. The software was still very much beta, so the [RADLab team] monitored everything via WiFi and restarted the software when necessary.

Continue reading “RFID Jacket Flashes The Crowd At Make Fashion 2014”

Forget Stopping Bullets – Vest Warms You While Stopping Taser

[Bruce Wayne] [Shenzhen] wanted a garment that would protect him from a jolt, while keeping him toasty in the cold weather. Well that’s not it at all, these are merely two of his projects using the same material in different ways.

We’re going to start with the infrared image on the right. This is a vest with chest and back pieces made of carbon tape totaling two meters of the material swirled on each side. Hook it to a power source and the carbon tape warms the wearer. Portability is something of an issue as each “element” takes 36 W of power (3A at 12V). Click through for advice on how to interface the tape with the power source.

Onto the main event… avoiding electrical shock when you get all up in the grill of that mall cop you’re hated for years. [Shenzhen’s] jacket is really just an ordinary long-sleeved coat. But he separated the lining at the bottom seam and used fusible material to hold the carbon tape in place. The carbon tape provides a better conductor than your skin, preventing the shock from stunning you as it was intended. This really is the thing of superheroes, or former editors who should have known better.

3D Printed RGB LED Bracelet

3dprintedrgbbraclet

[Marcus’s] 3D-printed LED bracelet has moved through a number of revisions recently, but each iteration is impressive in both simplicity and functionality. Inspired to experiment with his print of [nervoussystem’s] Diagrid Bracelet, [Marcus] took the opportunity to add some LEDs with his first build, which combined a strip of RGB LEDs, a small battery, and an Adafruit Trinket microcontroller.

A second build soon followed, which overhauled the bracelet’s design into a more solid form and managed to double the amount of LEDs by upgrading to a different strip. The bracelet is currently in its third revision, cycling through the spectrum for around 3.5 hours on a single charge. This build also sports a 3-axis accelerometer: when the wearer shakes the bracelet, the colors skip around. If shaken long enough, the bracelet will enter a dazzling flurry of color flickering. Stick around after the break for a few demonstration videos. If you want to print your own, head over to [Marcus’s] Thingiverse file.

Continue reading “3D Printed RGB LED Bracelet”

OpenKnit, The Open Source Knitting Machine

For all the hubbub about 3D printers leading a way into a new era of manufacturing, a third industrial revolution, and the beginnings of Star Trek replicators, we really haven’t seen many open source advances in the production of textiles and clothing. You know, the stuff that started the industrial revolution. [Gerard Rubio] is bucking that trend with OpenKnit, an open-source knitting machine that’s able to knit anything from a hat to a sweater using open source hardware and software.

We’ve seen a few builds involving knitting machines, but with few exceptions they’re modifications of extremely vintage Brother machines hacked for automation. OpenKnit is built from the ground up from aluminum extrusion, 3D printed parts, a single servo and stepper motor, and a ton of knitting needles.

The software is based on Knitic, an Arduino-based brain for the old Brother machines. This, combined with an automatic shuttle, allows OpenKnit to knit the sweater seen in the pic above in about an hour.

Since OpenKnit is inspired by the RepRap project, all the files, software, and assembly instructions will be up on Github shortly. there’s also a video available below, and a Flickr gallery right here.

Continue reading “OpenKnit, The Open Source Knitting Machine”

Make Your Own Smart Watch

Wearables are all the rage lately. Have you been eyeing the Pebble or one of the new smart watches lately but are not sure if it’s for you? With [GodsTale’s] “Retro Watch” you can now build your own, allowing you to try out a smart watch without making a huge investment.

This smart watch uses very common and easy to obtain parts: Arduino Pro Mini, HC-06 Bluetooth module, Adafruit’s 0.96’’ OLED display, and a lithium battery. It is amazing how few parts can be used to make such a functional project. While the example packaging shown is a bit rugged around the edges, it gets the job done. Having such simple hardware allows [GodsTale] to focus on the software. One of the coolest aspects of this project is the Android app [GodsTale] provides. The app provides basic functionality, such as viewing RSS feeds and Android notifications. Check out the GitHub and a more detailed write-up for more information.

It would be great to see this project evolve in the future, it has so much potential. We would love to see a custom circuit board, or a model for a 3D printed case for this awesome smart watch. See a video of the Retro Watch in action after the break. If you thought this was cool, check out a few of these recent hacks.

Continue reading “Make Your Own Smart Watch”

Building A Better Sewing Machine

sewing

After making a few fabric RFID tags, [Micah] had a sewing machine sitting in her workshop completely unused. This was due at least in part to how crappy this entry-level sewing machine was; it stalled easily, unusable at low speeds, and noises like a robot with bronchitis. The solution, of course, was to replace the motor and add electronic control, turning a terrible sewing machine into one that should cost several hundred dollars more.

After some experimentations with an AC motor, [Micah] came upon a small DC motor. This, combined with an LMD18200 H-bridge, Propeller microcontroller, and a beefy power supply gave [Micah] enough torque to run the sewing machine without mechanical wheezing and grinding.

The new update to the motor allowed [Micah] several control modes for the machine, all controlled by the foot pedal: an open-loop mode is pretty much the same as the stock machine, a closed-loop mode keeps a constant RPM on the motor regardless of resistance. There are a few more interesting modes that moves the needle down when the pedal is released, perfect for detailed work.

A small addition to this project was an LCD attached to the front of the machine, allowing [Micah] to toggle modes without the microcontroller being connected to the computer.

Continue reading “Building A Better Sewing Machine”

Fixing The Unfixable: Pebble Smartwatch Screen Replacement

[Colt] found himself with a broken Pebble, so he fixed it. The Pebble watch really ignited the smartwatch world with its record-breaking Kickstarter campaign. Working on the Pebble has proved to be frustrating experience for hardware hackers though. Ifixit’s teardown revealed the Pebble extremely difficult to repair. This isn’t due to some evil plan by the smartwatch gods to keep us from repairing our toys. It’s a problem that comes from stuffing a lot electronics into a small waterproof package. [Colt’s] problem was a bad screen. Pebble has a few known screen issues with their early models. Blinking screens, snow, and outright failed screens seemed to happen at an alarming rate as the early Kickstarter editions landed. Thankfully all those issues were corrected and replacements sent to the unlucky owners.

The actual screen used in the Pebble is a Sharp Memory LCD. Memory is an apt name as the screens actually behave as a SPI attached write only memory. Sharp sells flexible printed circuit (FPC) versions of the LCDs to aid in debugging. For space constrained designs though, an elastomeric or “zebra strip” connector is the common way to go. Alternating bands of conductive and insulating material make electrical connections between the Pebble’s circuit board and the conductive portions of the LCD glass.

[Colt] found himself with a dead screen out of warranty, so he decided to attempt a screen replacement. He found a replacement screen from Mouser, and proceeded to remove the top case of his watch. The top plastic case seems to be the hardest part of getting into a Pebble. It appears to be bonded with a glue that is stronger than the plastic itself. [Colt] broke the glass of his screen during the removal, which wasn’t a big deal as it was already dead. Prying only destroyed the top plastic, so he broke out a rotary tool which made quick work of the plastic.  The new screen worked perfectly, but had to be held in just the right position over its zebra connector. Some waterproof epoxy held it in place permanently. The next step was a new top cover. An old flip phone donated its plastic shell to the effort, and hot glue kept everything in place. [Colt] finished his work with a couple of layers of model paint. The result certainly isn’t as pretty or waterproof as the original. It is functional though, and about $120 USD cheaper than buying a new Pebble.

Continue reading “Fixing The Unfixable: Pebble Smartwatch Screen Replacement”