Watch SLS 3D Printed Parts Become Printed Circuits

[Ben Krasnow] of the Applied Science channel recently released a video demonstrating his process for getting copper-plated traces reliably embedded into sintered nylon powder (SLS) 3D printed parts, and shows off a variety of small test boards with traces for functional circuits embedded directly into them.

Here’s how it works: The SLS 3D printer uses a laser to fuse powdered nylon together layer by layer to make a plastic part. But to the nylon powder, [Ben] has added a small amount of a specific catalyst (copper chromite), so that prints contains this catalyst. Copper chromite is pretty much inert until it gets hit by a laser, but not the same kind of laser that sinters the nylon powder. That means after the object is 3D printed, the object is mostly nylon with a small amount of (inert) copper chromite mixed in. That sets the stage for what comes next.

Continue reading “Watch SLS 3D Printed Parts Become Printed Circuits”

RC Batwing Actually Flies

Batman is a compelling superhero for enough reasons that he’s been a cultural force for the better part of a century. His story has complex characters, interesting explorations of morality, iconic villains, and of course a human superhero who gets his powers from ingenuity instead of a fantastical magical force. There are a number features of the Batman universe that don’t translate well to the real world, though, such as a costume that would likely be a hindrance in fights, technology that violates the laws of physics, and a billionaire that cares about regular people, but surprisingly enough his legendary Batwing jet airplane actually seems like it might be able to fly.

While this is admittedly a model plane, it flies surprisingly well for its nontraditional shape. [hotlapkyle] crafted it using mostly 3D printed parts, and although it took a few tries to get it working to his standards, now shoots through the air quite well. It uses an internal electric ducted fan (EDF) to get a high amount of thrust, and has elevons for control. There are two small vertical stabilizer fins which not only complete the look, but allow the Batwing to take to the skies without the need for a flight controller.

Not only is the build process documented in the video linked below with some interesting tips about building RC aircraft in general, but the STL files for this specific build are available for anyone wanting to duplicate the build or expand on it. There are plenty of other interesting 3D-printed models on [hotlapkyle]’s page as well that push the envelope of model aircraft. For some other niche RC aircraft designs we’ve seen in the past be sure to check out this F-35 model that can hover or this tilt-rotor Osprey proof-of-concept.

Continue reading “RC Batwing Actually Flies”

BikeBeamer Adds POV Display To Bicycle Wheels

Unless you’re living in a bicycle paradise like the Netherlands, most people will choose to add some sort of illumination to their bicycle to help drivers take note that there’s something other than a car using the road. Generally, simple flashing LEDs for both the front and the rear is a pretty good start, but it doesn’t hurt to add a few more lights to the bicycle or increase their brightness. On the other hand, if you want to add some style to your bicycle lighting system then this persistence of vision (POV) display called the BikeBeamer from [locxter] might be just the thing.

The display uses four LED strips, each housed in their own 3D printed case which are installed at 90-degree angles from one another in between the spokes of a standard bicycle wheel. An ESP32 sits at the base of one of the strips and is responsible for storing the image and directing the four displays. This is a little more complex than a standard POV display as it’s also capable of keeping up with the changing rotational speeds of the bicycle wheels when in use. The design also incorporates batteries so that no wires need to route from the bike frame to the spinning wheels.

This is an ongoing project for [locxter] as well, meaning that there are some planned upgrades even to this model that should be in the pipe for the future. Improving the efficiency of the code will hopefully allow for more complex images and even animations to be displayed in the future, and there are also some plans to improve the PCB as well with all surface-mount components. There are a few other ways to upgrade your bike’s lighting as well, and we could recommend this heads-up headlight display to get started.

Automating 3D Printer Support Hardware

While 3D printers have evolved over the past two decades from novelties to powerful prototyping tools, the amount of support systems have advanced tremendously as well. From rudimentary software that required extensive manual input and offered limited design capabilities, there’s now user-friendly interfaces with more features than you could shake a stick at. Hardware support has become refined as well with plenty of options including lighting, ventilation, filament recycling, and tool changers. It’s possible to automate some of these subsystems as well like [Caelestis Workshop] has done with this relay control box.

This build specifically focuses on automating or remotely controlling the power, enclosure lighting, and the ventilation system of [Caelestis Workshop]’s 3D printer but was specifically designed to be scalable and support adding other features quickly. A large power supply is housed inside of a 3D printed enclosure along with a Raspberry Pi. The Pi controls four relays which are used to control these various pieces hardware along with the 3D printer. That’s not the only thing the Pi is responsible for, though. It’s also configured to run Octoprint, a piece of open-source software that adds web interfaces for 3D printers and allows their operation to be monitored and controlled remotely too.

With this setup properly configured, [Caelestis Workshop] can access their printer from essentially any PC, monitor their prints, and ensure that ventilation is running. Streamlining the print process is key to reducing the frustration of any 3D printer setup, and this build will go a long way to achieving a more stress-free environment. In case you missed it, we recently hosed a FLOSS Weekly episode talking about Octoprint itself which is worth a listen especially if you haven’t tried this piece of software out yet.

Make A Super Cute LiDAR Measurement Module

This ultra-cute tiny LiDAR rangefinder project by [gokux] can be thought of as a love letter to the incredible resources and components hobbyists and hackers of all types have access to nowadays. In fact, it all stemmed from coming across a miniscule half-inch 64×32 OLED display module that was simply too slick to pass up.

USB connector for charging on the bottom, hole for distance sensor out the top.

To use it, one simply powers it on and the display will read out the distance in millimeters. The VL53L0X time-of-flight sensor inside works by sending out a laser pulse and measuring how long it takes for the pulse to bounce back. We hope you’re curious about what such a sensor looks like on the inside, because here’s a nifty teardown of these fantastic devices. The device can technically measure distances of up to 2 m, but [gokux] says accuracy drops off after 1 m.

The main components besides the OLED display and VL53L0X sensor are an ESP32-C3 board (which handily integrates battery charging circuitry), 3D-printed enclosure, tiny rechargeable battery, and power switch. The whole thing is under one cubic inch. Not bad, and it even makes a passable keychain. Parts list, code, and 3D model files, including STEP format, are all available if you’d like to spend an afternoon making your own.

Tell Time And Predict The Heavens With This Astronomical Timepiece

Looking for a new project, or just want to admire some serious mechanical intricacy? Check out [illusionmanager]’s Astronomical Clock which not only tells time, but shows the the positions of the planets in our solar system, the times of sunrise and sunset, the phases of the moon, and more — including solar and lunar eclipses.

One might assume that the inside of the Astronomical Clock is stuffed with a considerable number of custom gears, but this is not so. The clock’s workings rely on a series of tabs on movable rings that interact with each other to allow careful positioning of each element. After all, intricate results don’t necessarily require complex gearing. The astrolabe, for example, did its work with only a few moving parts.

The Astronomical Clock’s mechanical elements are driven by a single stepper motor, and the only gear is the one that interfaces the motor shaft to the rest of the device. An ESP32-C3 microcontroller takes care of everything else, and every day it updates the position of each element as well as displaying the correct time on the large dial on the base.

The video below shows the clock in operation. Curious its inner workings? You can see the entire construction process from beginning to end, too.

Continue reading “Tell Time And Predict The Heavens With This Astronomical Timepiece”

Noodles Time Themselves While Cooking

Despite the name, so-called “instant” noodles still need to sit for a few minutes before they’re actually ready to eat. Most people would likely use a simple kitchen timer to let them know when it’s time to chow down, but this unique mechanical timer uses the weight of the noodles themselves to power a timing mechanism.

The timer acts in much the same way that a pendulum clock would, in that a weight provides the energy to drive the clock’s mechanism which releases that energy in discrete steps. Besides a few metal parts and some magnets, the majority of the clock is 3D printed with a small platform on the side where the noodles rest. As the platform falls the weight drives the clock mechanism which will finally alert the user when they finish their descent three minutes later with the help of a small bell. There’s even an analog display which shows the number of minutes remaining before the noodles are ready to eat.

As far as single-purpose kitchen appliances go, this is one that we might find ourselves sacrificing some counter space for not only for the usefulness but also for the aesthetic appeal of the visible clock movements and high-quality design. It could even go beside the automatic ramen cooker for when we’re too busy (or lazy) to even boil the water for instant noodles ourselves.

Continue reading “Noodles Time Themselves While Cooking”