Toddler EV Gets Big Boy Battery Upgrade

No matter the type of vehicle we drive, it has a battery. Those batteries wear out over time. Even high end EV’s have batteries with a finite life. But when your EV uses Lead Acid batteries, that life is measured on a much shorter scale. This is especially true when the EV is driven by a driver that takes up scarcely more space in their EV than a stuffed tiger toy! Thankfully, the little girl in question has a mechanic:

A 3d printed adapter sends go-juice to the DC-DC converter

Her daddy, [Brian Lough], who documented the swift conversion of his daughter’s toy truck from Lead Acid to Li-Ion in the video which you can see below the break.

Facing challenges similar to that of actual road worthy passenger vehicles, [Brian] teamed up with [bitluni] to solve them. The 12 V SLA battery was being replaced with a 20 V Li-Ion pack from a power tool. A 3d printed adapter was enlisted to break out the power pins on the pack. The excessive voltage was handled with a DC-to-DC converter that, after a bit of tweaking, was putting out a solid 12 V.

What we love about the hack is that it’s one anybody can do, and it gives an inkling of what type of engineering goes into even larger projects. And be sure to watch the video to the end for the adorable and giggly results!

Speaking of larger projects, check out the reverse engineering required in this Lead Acid to Li-Ion conversion we covered in 2016.

Continue reading “Toddler EV Gets Big Boy Battery Upgrade”

Go Big Or Go Home: 0.6 Mm Nozzles Are The Future

Most desktop fused deposition modeling (FDM) 3D printers these days use a 0.4 mm nozzle. While many people have tried smaller nozzles to get finer detail and much larger nozzles to get faster printing speed, most people stick with the stock value as a good trade-off between the two. That’s the conventional wisdom, anyway. However, [Thomas Sanladerer] asserts that with modern slicers, the 0.4 mm nozzle isn’t the best choice and recommends you move up to 0.6 mm.

If you know [Thomas], you know he wouldn’t make a claim like that without doing his homework. He backs it up with testing, and you can see his thoughts on the subject and the test results in the video below. The entire thing hinges on the Ultimaker-developed Arachne perimeter generator that’s currently available in the alpha version of PrusaSlicer.

We’ve experimented with nozzles as small as 0.1 mm and, honestly, it still looks like an FDM 3D print and printing takes forever at that size. But these days, if we really care about the detail we are probably going to print with resin, anyway.

There are a few slicer settings to consider and you can see the whole setup in the video. The part where an SLA test part is printed with both nozzles is particularly telling. This is something that probably shouldn’t print well with an FDM at all. Both nozzles had problems but in different areas.

Continue reading “Go Big Or Go Home: 0.6 Mm Nozzles Are The Future”

Custom Raspberry Pi Case Shows The Whole Workflow

If you are a process junkie and love seeing the end-to-end of how a thing is made and with what tools, then watch [Michael Klements] show off his Raspberry Pi case design. His case has quite a few cool-looking elements to it, and incorporates 3D printing as well as laser-cut and clear bent acrylic for a gorgeous three-quarter view.

[Michael]’s write-up (and accompanying video, embedded below) are partly a review of his Creality 3D printer, and partly a showcase of his Raspberry Pi case design (for which he sells the design files for a small fee on his Etsy store.) But the great part is seeing the creation of every piece that goes into the end product. Not everyone is familiar with the way these tools work, or what they can create, so it’s nice to see attention paid to that side of things.

Both the blog post and the video nicely show off what goes into every part. The video opens with unpacking and setting up the 3D printer (skip ahead to 4:58 if you aren’t interested), followed by printing the parts, laser-cutting the acrylic on a K40 laser cutter, bending the acrylic using a small hand tool, and finally, assembling everything. For the curious, there are also links to the exact parts and equipment he uses.

Like we said, it’s part 3D printer review and part showcase of a design he sells, but it’s great to see each of the parts get created, watch the tools get used, and see the results come together in the final product. And should you wish to go in the opposite direction? A one-piece minimalist case for your Raspberry Pi is only a 3D printer away.

Continue reading “Custom Raspberry Pi Case Shows The Whole Workflow”

Transparent Cylinder Shows You What You Otto Know About 4 Cycle Engines

When we think of a typical four stroke internal combustion engine, we think of metal. And for any type of longevity or performance, that’s certainly the right choice. But [Integza] wanted to see what happens inside a 4 stroke engine, and it wasn’t enough to see it from a transparent cylinder head. No, he wanted to see it in the cylinder itself. Thanks to advances in material sciences, he got his wish as seen in the video below the break.

While researching possible transparent materials to use as a cylinder on his model engine, he learned about resin polishing. Combining his newly learned resin polishing knowledge with his knowledge of 3D printing, [Integza] printed a new cylinder and polished the resin until it was transparent. The engine ran, but misfired terribly.

The experiment progressed into trying different fuels and learning the differences between them, as well as uncovering a new-to-him mystery: Why was the engine misfiring, and why did the different fuels act so dramatically different? Indeed, more learning and more experimenting is needed. But if you want to see the great sight of watching combustion take place in slo-mo, you have to check out the video below.

3D printing has come a long way in a short time, and may even hold the key to practical scramjets for hypersonic aircraft.

Continue reading “Transparent Cylinder Shows You What You Otto Know About 4 Cycle Engines”

Ask Hackaday: Resin Printer Build Plates

The early days of FDM 3D printing were wild and wooly. Getting plastic to stick to your build plate was a challenge. Blue tape and hairspray-coated glass were kings for a long time. Over time, better coatings have appeared and many people use spring steel covered in some kind of PEI. There seem to be fewer choices when it comes to resin printers, though. We recently had a chance to try three different build surfaces on two different printers: a Nova3D Bene4 and an Anycubic Photon M3. We learned a lot.

Resin Printing Review

If you haven’t figuratively dipped your toe into resin yet — which would literally be quite messy — the printers are simple enough. There is a tank or vat of liquid resin with a clear film on the bottom. The vat rests on an LCD screen and there is a UV source beneath that.

Continue reading “Ask Hackaday: Resin Printer Build Plates”

Liquid Piston Engine Finally Works

The first video from [3DPrintedLife] attempting to make a liquid piston engine was… well… the operative word is attempting. The latest video, though, which you can see below gets it right, at least eventually.. He has a good explanation of the changes that made the design better. Turns out, one change that made a difference was to turn a key part of the engine inside out. You can see the video below.

The first version would quickly break during operation and while the first new version didn’t work very well, it did stay in one piece which is a definite improvement.

Continue reading “Liquid Piston Engine Finally Works”

3D Print Your Own Multi-Color Filament

Interested in experimenting with your own multi-color filament? [Turbo_SunShine] says to just print your own, and experiment away! Now, if you’re thinking that 3D printing some filament sounds inefficient at best (and a gimmick at worst) you’re not alone. But there’s at least one use case that it makes sense for, and maybe others as well.

Printing with bi-color filament results in an object whose color depends on viewing angle, and part geometry.

There is such a thing as bi-color filament (like MatterHackers Quantum PLA) which can be thought of as filament that is split down the center into two different colors. Printing with such filament can result in some trippy visuals, like objects whose color depends in part on the angle from which they are viewed. Of course, for best results it makes sense to purchase a factory-made spool, but for light experimenting, it’s entirely possible to 3D print your own bi-color filament. Back when [Turbo_SunShine] first shared his results, this kind of stuff wasn’t available off the shelf like it is today, but the technique can still make sense in cases where buying a whole spool isn’t called for.

Here is how it works: the 3D model for filament is a spiral that is the right diameter for filament, printed as a solid object. The cross-section of this printed “filament” is a hexagon rather than a circle, which helps get consistent results. To make bi-color filament, one simply prints the first half of the object in one color, then performs a color change, and finishes the print with a second color. End result? A short coil of printed “filament”, in two colors, that is similar enough to the normal thing to be fed right back into the printer that created it. This gallery of photos from [_Icarus] showcases the kind of results that are possible.

What do you think? Is 3D printing filament mainly an exercise in inefficiency, or is it a clever leveraging of a printer’s capabilities? You be the judge, but it’s pretty clear that some interesting results can be had from the process. Take a few minutes to check out the video (embedded below) for some additional background.

Continue reading “3D Print Your Own Multi-Color Filament”