Hackaday Podcast 035: LED Cubes Taking Over, Ada Vanquishes C Bugs, Rad Monitoring Is Hot, And 3D Printing Goes Full 3D

Hackaday Editors Mike Szczys and Elliot Williams get caught up on the most interesting hacks of the past week. On this episode we take a deep dive into radiation-monitor projects, both Geiger tube and scintillator based, as well as LED cube projects that pack pixels onto six PCBs with parts counts reaching into the tens of thousands. In the 3D printing world we want non-planar printing to be the next big thing. Padauk microcontrollers are small, cheap, and do things in really interesting ways if you don’t mind embracing the ecosystem. And what’s the best way to read a water meter with a microcontroller?

Take a look at the links below if you want to follow along, and as always tell us what you think about this episode in the comments!

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (60 MB or so.)

Continue reading “Hackaday Podcast 035: LED Cubes Taking Over, Ada Vanquishes C Bugs, Rad Monitoring Is Hot, And 3D Printing Goes Full 3D”

Why Ada Is The Language You Want To Be Programming Your Systems With

The Ada programming language was born in the mid-1970s, when the US Department of Defense (DoD) and the UK’s Ministry Of Defence sought to replace the hundreds of specialized programming languages used for the embedded computer systems that increasingly made up essential parts of military projects.  Instead, Ada was designed to be be a single language, capable of running on all of those embedded systems, that offered the same or better level of performance and reliability.

With the 1995 revision, the language also targeted general purpose systems  and added support for object-oriented programming (OOP) while not losing sight of the core values of reliability, maintainability and efficiency. Today, software written in Ada forms the backbone of not only military hardware, but also commercial projects like avionics and air-traffic control systems. Ada code controls rockets like the Ariane 4 and 5, many satellites, and countless other systems where small glitches can have major consequences.

Ada might also be the right choice for your next embedded project. Continue reading “Why Ada Is The Language You Want To Be Programming Your Systems With”

Programming A RISC-V Softcore With Ada

We were contacted by [morbo] to let us know about a project on the AdaCore blog that concerns programming a PicoRV32 RISC-V softcore with Ada. The softcore itself runs on a Lattice ICE40LP8K-based TinyFPGA-BX FPGA board, which we have covered in the past.

The blog post describes how to use the Community edition of the GNAT Ada compiler to set up the development environment, before implementing a simple example project that controls a strip of WS28212b RGB LED modules. There are two push buttons changing the animation and brightness of the lights.

The source can be found at the author’s Github repository, and contains both the Ada source and the Verilog source for the PicoRV32 softcore. To build the project one needs the GNAT compiler, as well as the open-source iCE40 development tools to compile the softcore.

There is a video demonstrating the finished example project, that we’ve placed below the break.

Continue reading “Programming A RISC-V Softcore With Ada”

Pen-Plotter Firmware Written Completely In Ada

[Fabian Chouteau] built a plotter out of CD-ROM parts. Yawn, you say? Besides being a beautiful physical build, this one has a twist. He wrote the software and firmware for the entire project himself, in Ada.

Ada is currently number two on our list of oddball programming languages that should be useful for embedded programming. It’s vaguely Pascal-y, but with some modern object-oriented twists. It was developed for safety-critical, real-time embedded systems (by the US Department of Defense), and is used in things like airplanes, rockets, and the French TGV trains. If that sounds like overkill for your projects, [Fabian]’s project shows that it’s still very tractable.

In his GitHub, he re-implements the GRBL G-code generator and then writes a GUI front-end for it. In his writeup, he mentions that the firmware and its simulator for the front-end use exactly the same code which is quite a nice trick, and guarantees no (firmware) surprises when moving from the modelled device to the real thing.

We looked quickly around for Ada resources and came up with: GNAT, the GNU Ada compiler, and its derivatives: GNAT for ARM (STM32-flavor), ARM-Ada (LPC21xx flavor), AVR-Ada, and MSP430-Ada.

Any of you out there use Ada in embedded work? We’d love to hear your thoughts.

Continue reading “Pen-Plotter Firmware Written Completely In Ada”