Soaring At Scale: Modular Airship Design

If you’re looking for an intriguing aerial project, [DilshoD] has you covered with his unique twist on modular airships. The project, which you can explore in detail here, revolves around a modular airship composed of individual spherical bodies filled with helium or hydrogen—or even a vacuum—arranged in a 3x3x6 grid. The result? A potentially more efficient airship design that could pave the way for lighter-than-air exploration and transport.

The innovative setup features flexible connecting tubes linking each sphere to a central gondola, ensuring stable expansion without compromising the airship’s integrity. What’s particularly interesting is [DilshoD]’s use of hybrid spheres: a vacuum shell surrounded by a gas-filled shell. This dual-shell approach adds buoyancy while reducing overall weight, possibly making the craft more maneuverable than traditional airships. By leveraging materials like latex used in radiosonde balloons, this design also promises accessibility for makers, hackers, and tinkerers.

Though this concept was originally submitted as a patent in Uzbekistan, it was unfortunately rejected. Nevertheless, [DilshoD] is keen to see the design find new life in the hands of Hackaday readers. Imagine the possibilities with a modular airship that can be tailored for specific applications. Interested in airships or modular designs? Check out some past Hackaday articles on DIY airships like this one, and dive into [DilshoD]’s full project here to see how you might bring this concept to the skies.

You’ve Probably Never Considered Taking An Airship To Orbit

There have been all kinds of wild ideas to get spacecraft into orbit. Everything from firing huge cannons to spinning craft at rapid speed has been posited, explored, or in some cases, even tested to some degree. And yet, good ol’ flaming rockets continue to dominate all, because they actually get the job done.

Rockets, fuel, and all their supporting infrastructure remain expensive, so the search for an alternative goes on. One daring idea involves using airships to loft payloads into orbit. What if you could simply float up into space?

Continue reading “You’ve Probably Never Considered Taking An Airship To Orbit”

Could Solar-Powered Airships Offer Cleaner Travel?

The blimp, the airship, the dirigible. Whatever you call them, you probably don’t find yourself thinking about them too often. They were an easy way to get airborne, predating the invention of the airplane by decades. And yet, they suffered—they were too slow, too cumbersome, and often too dangerous to compete once conventional planes hit the scene.

And yet! Here you are reading about airships once more, because some people aren’t giving up on this most hilarious manner of air travel. Yes, it’s 2024, and airship projects continue apace even in the face of the overwhelming superiority of the airplane.

Continue reading “Could Solar-Powered Airships Offer Cleaner Travel?”

Buoyant Aero MK4 keeps station in a tail wind

Aerodynamic Buoyant Blimp Budges Into Low Cost Cargo Commerce

Before the Wright Brothers powered their way across the sands of Kitty Hawk or Otto Lilienthal soared from the hills of Germany, enveloping hot air in a balloon was the only way to fly. Concepts were refined as time went by, and culminated in the grand Zeppelins of the 1930’s. However since the tragic end of the Zeppelin era, lighter than air aircraft have often been viewed as a novelty in the aviation world.

Several companies have come forward in the last decade, pitching enormous lighter than air machines for hauling large amounts of cargo at reduced cost. These behemoths rely on a mixture of natural buoyancy and lifting body designs and are intended to augment ferries and short haul commercial aviation routes.

It was this landscape where Buoyant Aero founders [Ben] and [Joe] saw an underserved that they believe they can thrive in: Transporting 300-600 lbs between warehouses or airports. They aim to increase the safety, cargo capacity, and range of traditional quadcopter concepts, and halve the operating costs of a typical Cessna 182. They hope to help people such as those rural areas of Alaska where high transportation costs double the grocery bill.

Like larger designs, Buoyant Aero’s hybrid airship relies on aerodynamic lift to supply one third the needed lift. Such an arrangement eliminates the need for ballast when empty while retaining the handling and navigation characteristics needed for autonomous flight. The smaller scale prototype’s outstanding ability to maneuver sharply and hold station with a tailwind is displayed in the video below the break. You can also learn more about their project on their Hacker News launch. We look forward to seeing the larger prototypes as they are released!

Perhaps this project will inspire your own miniature airship, in which case you may want to check out the Blimpduino for some low buck ideas. We recently covered some other Hybrid Airships that are trying to scale things even further. And if you have your own blimpy ideas you’d like to pass along, please let us know via the Tip Line!

Continue reading “Aerodynamic Buoyant Blimp Budges Into Low Cost Cargo Commerce”

Could Airships Make A Comeback With New Hybrid Designs?

Airships. Slow, difficult to land, and highly flammable when they’re full of hydrogen. These days, they’re considered more of a historical curiosity rather than a useful method of transport.

Hybrid Air Vehicles are a UK-based startup working to create a modern take on the airship concept. The goal is to create cleaner air transport for short-hop routes, while also solving many of the issues with the airship concept with a drastic redesign from the ground up. Their vehicle that will do all this goes by the name of Airlander 10. But is it enough to bring airships back to the skies?

A Hybrid Technology

Airlander 10 seen taking off during its first flight.

The Airlander 10 is not a lighter-than-air craft like traditional airships. Instead, the vehicle uses the buoyancy from its helium envelope to create only 60-80% of its lift. The rest of the left is generated aerodynamically by air passing over the eliptical shape of the airship’s body. This lift can also be further augmented by two diesel-powered ducted fans on the sides of the airship, which can pivot to assist with takeoff and landing. Two further fixed ducted fans on the rear provide the primary propulsion for the craft.

The hybrid approach brings several benefits over the traditional airship model. Chief among them is that as the Airlander 10 is heavier than air, it need not vent helium throughout flight to avoid becoming positively buoyant as fuel burns off, nor does it need to vent helium to land. However, it still maintains the capability to loiter for incredibly long periods in the sky as it needs to burn very little fuel to stay aloft. Reportedly, it is capable of five days when manned, and even longer durations if operated in an unmanned configuration. Using helium for lift instead of solely relying on engine thrust and wings means that it is much more fuel efficient than traditional fixed-wing airliners. The company’s own estimates suggest the Airlander 10 could slash emissions on short-haul air routes by up to 90%. The gentle take-off and landing characteristics also mean the vehicle doesn’t require traditional airport facilities, making it possible to operate more easily in remote areas, on grass, sand, or even water. Continue reading “Could Airships Make A Comeback With New Hybrid Designs?”

Exploring The Clouds Of Venus; It’s Not Fantasy, But It Will Take Specialized Spacecraft

By now, you’ve likely heard that scientists have found a potential sign of biological life on Venus. Through a series of radio telescope observations in 2017 and 2019, they were able to confirm the presence of phosphine gas high in the planet’s thick atmosphere. Here on Earth, the only way this gas is produced outside of the laboratory is through microbial processes. The fact that it’s detectable at such high concentrations in the Venusian atmosphere means we either don’t know as much as we thought we did about phosphine, or more tantalizingly, that the spark of life has been found on our nearest planetary neighbor.

Venus, as seen by Mariner 10 in 1974

To many, the idea that life could survive on Venus is difficult to imagine. While it’s technically the planet most like Earth in terms of size, mass, composition, and proximity to the Sun, the surface of this rocky world is absolutely hellish; with a runaway greenhouse effect producing temperatures in excess of 460 C (840 F). Life, at least as we currently know it, would find no safe haven on the surface of Venus. Even the Soviet Venera landers, sent to the planet in the 1980s, were unable to survive the intense heat and pressure for more than a few hours.

While the surface may largely be outside of our reach, the planet’s exceptionally dense atmosphere is another story entirely. At an altitude of approximately 50 kilometers, conditions inside the Venusian atmosphere are far more forgiving. The atmospheric pressure at this altitude is almost identical to surface-level pressures on Earth, and the average temperature is cool enough that liquid water can form. While the chemical composition of the atmosphere is not breathable by Earthly standards, and the clouds of sulfuric acid aren’t particularly welcoming, it’s certainly not out of the realm of possibility that simple organisms could thrive in this CO2-rich environment. If there really is life on Venus, many speculate it will be found hiding in this relatively benign microcosm high in the clouds.

In short, all the pieces seem to be falling into place. Observations confirm a telltale marker of biological life is in the upper levels of the Venusian atmosphere, and we know from previous studies that this region is arguably one of the most Earth-like environments in the solar system. It’s still far too early to claim we’ve discovered extraterrestrial life, but it’s not hard to see why people are getting so excited.

But this isn’t the first time scientists have turned their gaze towards Earth’s twin. In fact, had things gone differently, NASA might have sent a crew out to Venus after the Apollo program had completed its survey of the Moon. If that mission had launched back in the 1970s, it could have fundamentally reshaped our understanding of the planet; and perhaps even our understanding of humanity’s place in the cosmos.

Continue reading “Exploring The Clouds Of Venus; It’s Not Fantasy, But It Will Take Specialized Spacecraft”

Bamboo Skewers Launch Airship

We have to admit, we like airships. There’s something about the image of a stately zeppelin floating over Manhattan that just makes us imagine the future. There are not many airships anymore, but you can always build your own. [Crafty Robot] shows how to use one of their boards to make a simple and easy controlled balloon. Honestly, they don’t give you many details, but we know how to turn motors and servos. We loved their construction with hot glue and bamboo. Effective, and fun to say.

The bamboo skewers are easy to find and make a lightweight frame. Some drone motors provide thrust and some simple RC servos control the angle of the props. Nice and simple.

Continue reading “Bamboo Skewers Launch Airship”