Apple Newton Gets Rebuilt Battery Pack

We all carry touch screen computers around in our pockets these days, but before the smartphone revolution, there was the personal digital assistant (PDA). While it wasn’t a commercial success, one of the first devices in this category was the Apple Newton. Today they’re sought after by collectors, although most of the ones surviving to this day need a bit of rework to the battery pack. Luckily, as [Robert’s Retro] shows, it’s possible to rebuild the pack with modern cells.

By modern standards, the most surprising thing about these battery packs is both that they’re removable and that they’re a standard size, matching that of AA batteries. The Newton battery pack uses four cells, so replacing them with modern rechargeable AA batteries should be pretty straightforward, provided they can be accessed. This isn’t as easy, though. In true Apple fashion the case is glued shut, and prying it apart can damage it badly enough so it won’t fit back in the tablet after repair is complete. The current solution is to cut a hatch into the top instead and then slowly work on replacing the cells while being careful to preserve the electronics inside.

[Robert’s Retro] also demonstrates how to spot weld these new AA batteries together to prepare them for their new home in the Newton case. With the two rows fastened together with nickel strips they can be quickly attached to the existing electrical leads in the battery pack, and from there it’s just a matter of snapping the batteries into the case and sliding it back into the tablet. If you’re looking for something a bit more modern, though, we’d recommend this Apple tablet-laptop combo, but it’s not particularly easy on the wallet.

Continue reading “Apple Newton Gets Rebuilt Battery Pack”

FlatMac: Building The 1980’s Apple IPad Concept

The Apple FlatMac was one of those 1980s concepts by designer [Hartmut Esslingers] that remained just a concept with no more than some physical prototypes created. That is, until [Kevin Noki] came across it in an Apple design book and contacted [Hartmut] to ask whether he would be okay with providing detailed measurements so that he could create his own.

Inside the 3D printed enclosure is a Raspberry Pi 4 running an appropriately emulated Macintosh, with a few modern features on the I/O side, including HDMI and USB. Ironically, the screen is from a 3rd generation iPad, which [Kevin] bought broken on EBay. There’s also an internal floppy drive that’s had its eject mechanism cleverly motorized, along with a modified USB battery bank that should keep the whole show running for about an hour. The enclosure itself is carefully glued, painted and sculpted to make it look as close to the original design as possible, which includes custom keycaps for the mechanical switches.

As far as DIY projects go, this one is definitely not for the faint of heart, but it’s fascinating to contrast this kind of project that’s possible for any determined hobbyist with the effort it would have taken forty years ago. The only question that’s left is whether or not the FlatMac would have actually been a practical system if it had made it to production. Although the keyboard seems decent, the ergonomics feel somewhat questionable compared to something more laptop-like.

Continue reading “FlatMac: Building The 1980’s Apple IPad Concept”

A hand holds a small PCB with an edge connector over the exposed, mostly black components of an M4 Mac mini. The bottom cover is hanging by an FFC cable off to the left of the

Upgrading The M4 Mac Mini With More Storage

Apple’s in-house chips have some impressive specs, but user serviceability is something Apple left behind for consumer machines around a decade ago. Repair legend [dosdude1] shows us how the new M4 Mac mini can get a sizeable storage upgrade without paying the Apple tax.

The Mac mini is Apple’s least expensive machine, and in the old days you could swap a SATA drive for more storage and not pay the exorbitant prices that OEMs demand. Never one to turn down a walled garden, later Intel machines and now the ARM-based M-series chips soldered storage into the machine leaving an upgrade out of the hands of anyone without a hot air station.

Both the Mac Studio and Mac mini now have proprietary storage cards, and after some tinkering, [dosdude1] has successfully upgraded the storage on the base model M4 mini. While most people don’t casually reball NAND chips while chatting on a video, his previous work with others in the space to make a Mac Studio upgrade kit give us hope we’ll soon see economical storage upgrades that keep the Mac mini affordable.

We’ve previously covered the first time Apple tried to make its own processors, and some of their more recent attempts at repairability.

Continue reading “Upgrading The M4 Mac Mini With More Storage”

Building A Reproduction Apple I

If you think of Apple today, you probably think of an iPhone or a Mac. But the original Apple I was a simple PC board and required a little effort to start up a working system. [Artem] has an Apple I reproduction PCB, and decided to build it on camera so we could watch.

For the Apple I, the user supplied a keyboard and some transformers, so [Artem] had to search for suitable components. He wisely checks the PCB to make sure there are no shorts in the traces. From there, you can watch him build the machine, but be warned: even with speed ups and editing, the video is over an hour long.

If you want to jump to the mostly working device, try around the 57-minute mark. The machine has a basic ROM monitor and, of course, needs a monitor. There was a small problem with memory, but he eventually worked it out by inhibiting some extra RAM on the board. Troubleshooting is half of the battle getting something like this.

Want to look inside the clock generator chip? Or skip the PCB and just use an FPGA.

Continue reading “Building A Reproduction Apple I”

The Most Inexpensive Apple Computer Possible

If Apple has a reputation for anything other than decent hardware and excellent industrial design, it’s for selling its products at extremely inflated prices. But there are some alternatives if you want the Apple experience on the cheap. Buying their hardware a few years out of date of course is one way to avoid the bulk of the depreciation, but at the extreme end is this working Mac clone that cost just $14.

This build relies on the fact that modern microcontrollers absolutely blow away the computing power available to the average consumer in the 1980s. To emulate the Macintosh 128K, this build uses nothing more powerful than a Raspberry Pi Pico. There’s a little bit more to it than that, though, since this build also replicates the feel of the screen of the era as well. Using a “hat” for the Pi Pico from [Ron’s Computer Videos] lets the Pico’s remaining system resources send the video signal from the emulated Mac out over VGA, meaning that monitors from the late 80s and on can be used with ease. There’s an option for micro SD card storage as well, allowing the retro Mac to have an incredible amount of storage compared to the original.

The emulation of the 80s-era Mac is available on a separate GitHub page for anyone wanting to take a look at that. A VGA monitor is not strictly required, but we do feel that displaying retro computer graphics on 4K OLEDs leaves a little something out of the experience of older machines like this, even if they are emulated. Although this Macintosh replica with a modern e-ink display does an excellent job of recreating the original monochrome displays of early Macs as well.

Continue reading “The Most Inexpensive Apple Computer Possible”

An image of a dark mode Linux desktop environment. A white iTunes window stands out in a virtualized Windows 10 environment. Two iPod games, "Phase" and "Texas Hold 'Em" are visible in the "iPod Games" section of the library.

IPod Clickwheel Games Preservation Project

The iPod once reigned supreme in the realm of portable music. Hackers are now working on preserving one of its less lauded functions — gaming. [via Ars Technica]

The run of 54 titles from 2006-2009 may not have made the iPod a handheld gaming success, but many still have fond memories of playing games on the devices. Unfortunately, Apple’s Fairplay DRM has made it nearly impossible to get those games back unless you happened to backup your library since those games can’t be downloaded again and are tied to both the account and iTunes installation that originally purchased the game.

Continue reading “IPod Clickwheel Games Preservation Project”

Apple Forces The Signing Of Applications In MacOS Sequoia 15.1

The dialogue that greets you when you try to open an unsigned application in MacOS Sequoia 15.1.

Many MacOS users are probably used by now to the annoyance that comes with unsigned applications, as they require a few extra steps to launch them. This feature is called Gatekeeper and checks for an Apple Developer ID certificate. Starting with MacOS Sequoia 15, the easy bypassing of this feature with e.g. holding Control when clicking the application icon is now no longer an option, with version 15.1 disabling ways to bypass this completely. Not unsurprisingly, this change has caught especially users of open source software like OpenSCAD by surprise, as evidenced by a range of forum posts and GitHub tickets.

The issue of having to sign applications you run on MacOS has been a longstanding point of contention, with HomeBrew applications affected and the looming threat for applications sourced from elsewhere, with OpenSCAD issue ticket #880 from 2014 covering the saga for one OSS project. Now it would seem that to distribute MacOS software you need to have an Apple Developer Program membership, costing $99/year.

So far it appears that this forcing is deliberate on Apple’s side, with the FOSS community still sorting through possible workarounds and the full impact.

Thanks to [Robert Piston] for the tip.