Reviving A Legend: Mamiya RB67 Repair

The damaged parts in the camera are circled in red. Original graphic is from the Mamiya service manual.

When it comes to professional medium format analog cameras, the Mamiya RB67 is among the most well-known and loved, ever since its introduction in 1970. Featuring not only support for 120 and 220 film options, but also a folding and ‘chimney’ style view finder and a highly modular body, these are just some reasons that have made it into a popular – if costly – reflex system camera even today. This is one reason why [Anthony Kouttron] chose to purchase and attempt to repair a broken camera, in the hopes of not only saving a lot of money, but also to save one of those amazing cameras from the scrap heap. Continue reading “Reviving A Legend: Mamiya RB67 Repair”

Glowscope Reduces Microscope Cost By Orders Of Magnitude

As smartphones become more ubiquitous in society, they are being used in plenty of ways not imaginable even ten or fifteen years ago. Using its sensors to gather LIDAR information, its GPS to get directions, its microphone to instantly translate languages, or even use its WiFi and cellular radios to establish a wireless hotspot are all things which would have taken specialized hardware not more than two decades ago. The latest disruption may be in microscopy, as this build demonstrates a microscope that would otherwise be hundreds of thousands of dollars.

The microscope is a specialized device known as a fluorescence microscope, which uses a light source to excite fluorescent molecules in a sample which can illuminate structures that would otherwise be invisible under a regular microscope. For this build, the light is provided by readily-available LED lighting as well as optical filters typically used in stage lighting, as well as a garden-variety smartphone. With these techniques a microscope can be produced for around $50 USD that has 10 µm resolution.

While these fluorescence microscopes do have some limitations compared to units in the hundred-thousand-dollar range, perhaps unsurprisingly, they are fairly impressive for such a low-cost alternative. More details about these builds can also be found in their research paper published in Nature. Even without the need for fluorescence microscopy, a smartphone has been shown to be a fairly decent optical microscope, provided you have the right hardware to supplement the phone’s camera.

Pocket-Sized Thermal Imager

Just as the gold standard for multimeters and other instrumentation likely comes in a yellow package of some sort, there is a similar household name for thermal imaging. But, if they’re known for anything other than the highest quality thermal cameras, it’s excessively high price. There are other options around but if you want to make sure that the finished product has some sort of quality control you might want to consider building your own thermal imaging device like [Ruslan] has done here.

The pocket-sized thermal camera is built around a MLX90640 sensor from Melexis which can be obtained on its own, but can also be paired with an STM32F446 board with a USB connection in order to easily connect it to a computer. For that, [Ruslan] paired it with an ESP32 board with a companion screen, so that the entire package could be assembled together with a battery and still maintain its sleek shape. The data coming from the thermal imagining sensor does need some post-processing in order to display useful images, but this is well within the capabilities of the STM32 and ESP32.

With an operating time on battery of over eight hours and a weight under 100 grams, this could be just the thing for someone looking for a thermal camera who doesn’t want to give up an arm and a leg to one of the industry giants. If you’re looking for something even simpler, we’ve seen a thermal camera based on a Raspberry Pi that delivers its images over the network instead of on its own screen.

AI And Savvy Marketing Create Dubious Moon Photos

Taking a high-resolution photo of the moon is a surprisingly difficult task. Not only is a long enough lens required, but the camera typically needs to be mounted on a tracking system of some kind, as the moon moves too fast for the long exposure times needed. That’s why plenty were skeptical of Samsung’s claims that their latest smart phone cameras could actually photograph this celestial body with any degree of detail. It turns out that this skepticism might be warranted.

Samsung’s marketing department is claiming that this phone is using artificial intelligence to improve photos, which should quickly raise a red flag for anyone technically minded. [ibreakphotos] wanted to put this to the test rather than speculate, so a high-resolution image of the moon was modified in such a way that most of the fine detail of the image was lost. Displaying this image on a monitor, standing across the room, and using the smartphone in question reveals details in the image that can’t possibly be there.

The image that accompanies this post shows the two images side-by-side for those skeptical of these claims, but from what we can tell it looks like this is essentially an AI system copy-pasting the moon into images it thinks are of the moon itself. The AI also seems to need something more moon-like than a ping pong ball to trigger the detail overlay too, as other tests appear to debunk a more simplified overlay theory. It seems like using this system, though, is doing about the same thing that this AI camera does to take pictures of various common objects.

Measuring A Millisecond Mechanically

If you are manufacturing something, you have to test it. It wouldn’t do, for example, for your car to say it was going 60 MPH when it was really going 90 MPH. But if you were making a classic Leica camera back in the early 20th century, how do you measure a shutter that operates at 1/1000 of a second — a millisecond — without modern electronics? The answer is a special stroboscope that would look at home in any cyberpunk novel. [SmarterEveryDay] visited a camera restoration operation in Finland, and you can see the machine in action in the video below.

The machine has a wheel that rotates at a fixed speed. By imaging a pattern through the camera, you can determine the shutter speed. The video shows a high-speed video of the shutter operation which is worth watching, and it also explains exactly how the rotating disk combined with the rotating shutter allows the measurement. Continue reading “Measuring A Millisecond Mechanically”

New Raspberry Pi Camera With Global Shutter

Raspberry Pi has just introduced a new camera module in the high-quality camera format. For the same $50 price you would shell out for the HQ camera, you get roughly eight times fewer pixels. But this is a global shutter camera, and if you need a global shutter, there’s just no substitute. That’s a big deal for the Raspberry Pi ecosystem.

Global vs Rolling

Most cameras out there today use CMOS sensors in rolling shutter mode. That means that the sensor starts in the upper left corner and rasters along, reading out exposure values from each row before moving down to the next row, and then starting up at the top again. The benefit is simpler CMOS design, but the downside is that none of the pixels are exposed or read at the same instant.

Continue reading “New Raspberry Pi Camera With Global Shutter”

Adversarial IR Hoodie Lets You Own The Night In Anonymity

If you’re in the market for something to obfuscate your nefarious nocturnal activities, rejoice — this adversarial infrared hoodie may be just what you’re looking for.

Not that we condone illegal activities, of course, and neither does artist [Mac Pierce], who created “The Camera-Shy Hoodie.” His purpose seems to be exploring the nature of the surveillance state, or rather to perplex it in the name of anonymity. The idea is simple — equip a standard hoodie with a ring of super-bright IR LEDs, and control them with an RP2040.

We’ve seen blinding hoodies before, but here the LEDs strobe on and off in one of three different patterns, all of which are timed to confound the autoexposure mechanism in just about any surveillance camera by not giving it time to adjust to the rapidly and drastically changing light level. The result is near-total obfuscation of the wearer’s facial features, at least when the camera is in night-vision mode. Check out the results in the video below.

There are some nice touches to [Mac]’s approach, like aluminum PCBs for the LEDs and the use of soldered-on fabric snaps to attach them to the inside of the hoodie, making them easy to remove for laundering. With the LEDs peeking through holes in the fabric, the hoodie looks pretty run-of-the-mill — until, of course, night falls and the USB battery bank in the hoodie’s pocket powers up the light show.

Granted, this won’t exactly help you avoid detection — the big ball of light around your head will be instantly seen by even the most casual observer. But at least it makes it easier to keep your face to yourself. And it won’t help much in daylight — for that, you might want something a little more like this passive adversarial ugly sweater.

Continue reading “Adversarial IR Hoodie Lets You Own The Night In Anonymity”