Cool Kinetic Sculpture Has Tooling Secrets To Share

Occasionally, we get a tip for a project that is so compelling that we just have to write it up despite lacking details on how and why it was built. Alternatively, there are other projects where the finished product is cool, but the tooling or methods used to get there are the real treat. “Homeokinesis,” a kinetic art installation by [Ricardo Weissenberg], ticks off both those boxes in a big way.

First, the project itself. Judging by the brief video clip in the reddit post below, Homeokinesis is a wall-mounted array of electromagnetically actuated cards. The cards are hinged so that solenoids behind them flip the card out a bit, making interesting patterns of shadow and light, along with a subtle and pleasing clicking sound. The mechanism appears to be largely custom-made, with ample use of 3D printed parts to make the frame and the armatures for each unit of the panel.

Now for the fun part. Rather than relying on commercial solenoids, [Ricardo] decided to roll his own, and built a really cool CNC machine to do it. The machine has a spindle that can hold at least eleven coil forms, which appear to be 3D printed. Blank coil forms have a pair of DuPont-style terminal pins pressed into them before mounting on the spindle, a job facilitated by another custom tool that we’d love more details on. Once the spindle is loaded up with forms, magnet wire feeds through a small mandrel mounted on a motorized carriage and wraps around one terminal pin by a combination of carriage and spindle movements. The spindle then neatly wraps the wire on the form before making the connection to the other terminal and moving on to the next form.

The coil winder is brilliant to watch in action — however briefly — in the video below. We’ve reached out to [Ricardo] for more information, which we’ll be sure to pass along. For now, there are a lot of great ideas here, both on the fabrication side and with the art piece itself, and we tip our hats to [Ricardo] for sharing this.

Continue reading “Cool Kinetic Sculpture Has Tooling Secrets To Share”

A Little Pigment Helps With Laser Glass Engraving

The range of materials suitable for even the cheapest laser cutter is part of what makes them such versatile and desirable tools. As long as you temper your expectations, there’s plenty of material to cut with your 40 watt CO2 laser or at least engrave—just not glass; that’s a tough one.

Or is it? According to [rschoenm], all it takes to engrave glass is a special coating. The recipe is easy: two parts white PVA glue, one part water, and two parts powdered titanium dioxide. The TiO2 is the important part; it changes color when heated by the laser, forming a deep black line that adheres to the surface of the glass. The glue is just there as a binder to keep the TiO2 from being blasted away by the air assist, and the water thins out the goop for easy spreading with a paintbrush. Apply one or two coats, let it dry, and blast away. Vector files work better than raster files, and you’ll probably have to play with settings to get optimal results.

With plain float glass, [rschoenm] gets really nice results. He also tried ceramic tile and achieved similar results, although he says he had to add a drop or two of food coloring to the coating so he could see it against the white tile surface. Acrylic didn’t work, but there are other methods to do that.

Continue reading “A Little Pigment Helps With Laser Glass Engraving”

Modulathe Is CNC Ready And Will Machine What You Want

Once upon a time, lathes were big heavy machines driven by massive AC motors, hewn out of cast iron and sheer will. Today, we have machine tools of all shapes and sizes, many of which are compact and tidy DIY creations. [Maxim Kachurovskiy]’s Modulathe fits the latter description nicely.

The concept behind the project was simple—this was to be a modular, digital lathe that was open-source and readily buildable on a DIY level, without sacrificing usability. To that end, Modulathe is kitted out to process metal, wooden, and plastic parts, so you can fabricate in whatever material is most appropriate for your needs.

It features a 125 mm chuck and an MT5 spindle, and relies on 15 mm linear rails, 12 mm ball screws, and NEMA23 stepper motors. Because its modular, much of the rest of the design is up to you. You can set it up with pretty much any practical bed length—just choose the right ball screw and rail to achieve it. It’s also set up to work however you like—you can manually operate it, or use it for CNC machining tasks instead.

If you want a small lathe that’s customizable and CNC-ready, this might be the project you’re looking for. We’ve featured some other similar projects in this space, too. Do your research, and explore! If you come up with new grand machine tools of your own design, don’t hesitate to let us know!

Thanks to [mip] for the tip!

An animated GIF of Engineer Bo's Precision Bluetooth Scroll Wheel wirelessly, and effortlessly scrolling down the Hack A Day blog with a single finger

Doomscroll Precisely, And Wirelessly

Around here, we love it when someone identifies a need and creates their own solution. In this case, [Engineer Bo] was tired of endless and imprecise scrolling with a mouse wheel. No off-the-shelf solutions were found, and other DIY projects either just used hacked mice scroll wheels, customer electronics with low-res hardware encoders, or featured high-res encoders that were down-sampled to low-resolution. A custom build was clearly required.

A photo of a 3D printed yellow plastic form with red marker drawn on the top of the support material and used in Engineer Bo's Precision Bluetooth Scroll Wheel

We loved seeing hacks along the whole process by [Engineer Bo], working with components on hand, pairing sensors to microcontrollers to HID settings, 3D printing forms to test ergonomics, and finishing the prototype device. When 3D printing, [Engineer Bo] inserted a pause after support material to allow drawing a layer of permanent marker ink that acts as a release agent that can later be cleaned with rubbing alcohol. 

We also liked the detail of a single hole inside used to install each of the three screws that secure the knob to the base. While a chisel and UV-curing resin cleaned up some larger issues with the print, more finishing was required. For a project within a project, [Engineer Bo] then threw together a mini lathe with 3D printed and RC parts to make sanding easy.

Scroll down with your clunky device to see the video that illustrates the precision with a graphic of a 0.09° rotation and is filled with hacky nuggets. See how the electronics were selected and the circuit designed and programmed, the use of PCBWay’s CNC machining in addition to board assembly services, and how to deal with bearings that spin too freely. [Engineer Bo] teases that a future version might use a larger bearing for less wobble and an anti-slip coating on the base. Will the board files and 3D models be released, too? Will these be sold as finished products or kits? Will those unused LED drivers be utilized in an upcoming version? We can’t wait to see what’s next for this project.

Continue reading “Doomscroll Precisely, And Wirelessly”

An IPhone Case Study

Way back in 2008, Apple unveiled the first unibody Macbook with a chassis milled out of a single block of aluminum. Before that, essentially all laptops, including those from Apple, were flimsy plastic screwed together haphazardly on various frames. The unibody construction, on the other hand, finally showed that it was possible to make laptops that were both lightweight and sturdy. Apple eventually began producing iPhones with this same design style, and with the right tools and a very accurate set of calipers it’s possible to not only piece together the required hardware to build an iPhone from the ground up but also build a custom chassis for it entirely out of metal as well.

The first part of the project that [Scotty] from [Strange Parts] needed to tackle was actually getting measurements of the internals. Calipers were not getting the entire job done so he used a flatbed scanner to take an image of the case, then milled off a layer and repeated the scan. From there he could start testing out his design. After an uncountable number of prototypes, going back to the CAD model and then back to the mill, he eventually settles into a design but not before breaking an iPhone’s worth of bits along the way. Particularly difficult are the recessed areas inside the phone, but eventually he’s able to get those hollowed out, all the screw holes tapped, and then all the parts needed to get a working iPhone set up inside this case.

[Scotty] has garnered some fame not just for his incredible skills at the precision mill, but by demonstrating in incredible detail how smartphones can be user-serviceable or even built from scratch. They certainly require more finesse than assembling an ATX desktop and can require some more specialized tools, but in the end they’re computers like any other. For the most part.

Continue reading “An IPhone Case Study”

Rolling Your Own Ball Screws

We’ve got mixed feelings about a new video from [AndysMachines] that details how he makes custom ball screws. On the one hand, there’s almost zero chance that we’ll ever have an opportunity to put this information to practical use. But on the other hand, the video gives a fantastic look at the inner workings and design considerations for ball screws, which is worth the price of admission alone

The story behind these ball screws is that [Andy] is apparently in cahoots with SkyNet and is building a T-800 Terminator of his own. Whatever, we don’t judge, but the build requires a short-throw linear drive mechanism that can be back-driven, specs that argue for a ball screw. [Andy] goes through the challenges of building such a thing, which mainly involve creating threads with a deep profile and wide pitch. The screw itself wasn’t too hard to cut, although there were some interesting practical details in the thread profile that we’d never heard of before.

The mating nut was another. Rather than try to cut deep internal threads, [Andy] took a sort of “open-face sandwich” approach, creating half-nuts in a single piece of brass using a CNC machine and a ball-nose mill. The threads were completed by cutting the two halves apart and bolting them together — very clever! [Andy] also showed how the balls recirculate in the nut through channels cut into one of the half-nuts.

Whether the results were worth the effort is up to [Andy], but we were just glad to be along for the ride. And if you want a little more detail on lead screws and ball screws, we’ve got just the article for that.

Continue reading “Rolling Your Own Ball Screws”

Simple Pen Plotter Rolls On The Table

Pen plotters are popular builds amongst DIY CNC enthusiasts. They’re a great way to learn the fundamentals of motion control and make something useful along the way. In that vein, [Maker101] has created a neat barebones plotter for tabletop use. 

The basic design relies on familiar components. It uses a pair of MGN15 linear rails as the basis of the motion platform, along with NEMA 17 stepper motors to run the X and Y axes. These are assembled with the aid of 3D-printed parts that bring the whole frame together, along with a pen lifter operated with a hobby servo.

The neat thing about the design is that the barebones machine is designed to sit upon an existing tabletop. This eliminates the need to integrate a large flat work surface into the plotter itself. Instead, the X axis just runs along whatever surface you place it on, rolling on a small wheel. It’s likely not ideal for accuracy or performance; we could see the machine itself skating around if run too fast. For a lightweight barebones plotter, though, it works well enough.

If you dig building plotters, you might like to step up to something more laser-y in future. Video after the break.

Continue reading “Simple Pen Plotter Rolls On The Table”