Don’t Say This DIY Diskette Was A Flop

Sometimes, you build a thing because you need a thing. Sometimes, you do it just to see if you can. This project is in category two: [polymatt] didn’t need to create a floppy disk from scratch-– plenty of old disks still exist– but we’re glad he made the attempt because it makes for a fascinating video that’s embedded below.

Some of you are going to quibble with the terminology [polymatt] uses in this video: first of all, he didn’t begin by creating the universe, so is he really starting “from scratch”? Secondly, the “floppy” format he’s attempting to copy is a 3½” diskette, which does not flop at all.

Choosing newer stiff-walled medium does allow him to practice his CNC skills and make the coolest-looking floppy enclosure we’ve ever seen. (It turns out brushed aluminum is even cooler-looking than the translucent neon ones.) On the other hand, we can’t help but wonder if a lower-density format 5¼” disk might have been an easier hurdle to jump. The diskette that was built does magnetize, but it can’t read or write actual files. We wonder if the older format might have been more forgiving of grain size and composition of his ferrite coating. Even more forgiving still would be to use these techniques to make magnetic tape  which is a perfectly viable way to store data.

Instead of storing data, you could make your own cleaning floppy. It’s not like data storage was really the point here, anyway– its not the destination, but the journey. So whatever you call this DIY diskette, please don’t call it a flop.

Thanks to [Anonymous] for the great tip!

Continue reading “Don’t Say This DIY Diskette Was A Flop”

The Kilopixel Display

Despite the availability of ready-made displays never being better, there are still some hardy experimenters who take on the challenge of making their own. In [Ben Holmen]’s case the display he built is somewhat unusual and not the most practical, but for us a giant-sized wooden kilopixel display is exactly what the world needs.

It’s a kilopixel display because it has a resolution of 40 by 25 pixels, and it takes the form of a rack of wooden cubes, each of which can be turned by a tool on a gantry to expose either a black or a white side. It’s very slow indeed — he has an over nine hour long video of it in operation — but it is an effective device.

His write-up goes into great detail about the steps taken in its design, starting with spherical pixels rotated by a LEGO wheel and progressing to cubes poked at their corner to rotate. The pusher in this case is a hot glue stick, for the required flexibility. For practicality we’re reminded of this serial oil-and-water display.

The whole thing is online, and if you want you can submit your own images for it to draw. Whether a Wrencher in 25 pixel resolution has enough detail, we’ll leave to you.

Clock Of Clocks Expands, Goes Digital

Some people just want to have their cake and eat it too, but very few of us ever get to pull it off. [Erich Styger] has, though with V5 of his “MetaMetaClock”— a clock made of clocks, that uses the orientation of the hands to create digits.

We’ve seen previous versions of this clock. As before, the build is exquisitely detailed and all relevant files are on GitHub. This version keeps the acrylic light-pipe hands of version 4, but adds more of them: 60 clocks vs 24. Larger PCBs are used, grouping the dual-shaft steppers into groups of four, instead of the individual PCBs used before. Each PCB has an NXP LPC845 (a Cortex M0 microcontroller) that communicates on an RS-485 bus. Placing four steppers per microcontroller reduces parts count somewhat compared to previous versions (which had each ‘clock’ on its own modular PCB) albeit at the cost of some flexibility.

While the last version used veneers on its face, this version is cut by CNC by from a large slab of oak. It’s certainly the most attractive version yet, and while bigger isn’t always better, more clock faces means more potential effects. Date? Time? Block letters? Arbitrary text? Kaleidoscopic colours from the RGB LEDs? It’s all there, and since it’s open source, anyone who builds one can add more options. A BLE interface makes it quick and easy to wirelessly switch between them or set the time.

It’s nice sometimes to watch projects like this improve incrementally over time. [Erich] mentions that he plans to add Wifi and a web-based user interface for the next version. We look forward to it, and are grateful to  [jicasi] for the tip. Just as it is always clock time at Hackaday, so you can always toss a tip of your own into the box.

Continue reading “Clock Of Clocks Expands, Goes Digital”

Skateboard Wheels Add Capabilities To Plasma Cutter

Although firmly entrenched in the cultural zeitgeist now, the skateboard wasn’t always a staple of popular culture. It had a pretty rocky start as surfers jankily attached roller skating hardware to wooden planks searching for wave-riding experiences on land. From those rough beginnings it still took decades of innovation until Rodney Mullen adapted the ollie for flatground skating before the sport really took off. Skateboard hardware is quite elegant now too; the way leaning turns the board due to the shape of the trucks is immediately intuitive for even the most beginner riders, and bearing technology is so high-quality and inexpensive now that skateboard hardware is a go-to parts bin grab for plenty of other projects like this plasma cutter modification.

[The Fabrication Series]’s plasma cutter is mounted to a CNC machine, allowing for many complex cuts in much less time than it would take to do by hand. But cutting tubes is a more complicated endeavor for a machine like this. This is where the skateboard hardware comes in: by fabricating two custom pivoting arms each with two skateboard wheels that push down on a tube to hold it in place, the CNC machine can roll the tube along the table in a precise way as the plasma cutter works through it.

Of course, cutting a moving part is a little more complicated for the CNC machine than cutting a fixed piece of sheet metal, so [The Fabrication Series] walks us through a few ways of cutting pipe for various purposes, including miters and notches. The first step is to build a model of the pipes, in this case using Onshape, and then converting the 3D model of the pipes into a sheet metal model that the CNC machine can use. It does take a few cuts on the machine to fine-tune the cuts, but in no time the machine is effortlessly cutting complex shapes into the pipe. Don’t have a plasma cutter at all? You can always build your own from scratch.

Thanks to [JohnU] and [paulvdh] for the tip!

Continue reading “Skateboard Wheels Add Capabilities To Plasma Cutter”

The bed of a small CNC machine is shown. A plastic tub is on the bed, and in the tub is a sheet of metal under a pale green solution. In place of the spindle of the CNC, there is a rectangular orange tube extending down into the solution. A red wire runs to this tube, and a black wire runs to the sheet of metal in the tub.

Painting In Metal With Selective Electroplating

Most research on electroplating tries to find ways to make it plate parts more uniformly. [Ajc150] took the opposite direction, though, with his selective electroplating project, which uses an electrode mounted on a CNC motion system to electrochemically print images onto a metal sheet (GitHub repository).

Normally, selective electroplating would use a mask, but masks don’t allow gradients to be deposited. However, electroplating tends to occur most heavily at the point closest to the anode, and the effect gets stronger the closer the anode is. To take advantage of this effect, [ajc150] replaced the router of an inexpensive 3018 CNC machine with a nickel anode, mounted an electrolyte bath in the workspace, and laid a flat steel cathode in it. When the anode moves close to a certain point on the steel cathode, most of the plating takes place there.

To actually print an image with this setup, [ajc150] wrote a Python program to convert an image into set of G-code instructions for the CNC. The darker a pixel of the image was, the longer the electrode would spend over the corresponding part of the metal sheet. Since darkness wasn’t linearly proportional to plating time, the program used a gamma correction function to adjust times, though this did require [ajc150] to recalibrate the setup after each change. The system works well enough to print recognizable images, but still has room for improvement. In particular, [ajc150] would like to extend this to a faster multi-nozzle system, and have the algorithm take into account spillover between the pixel being plated and its neighbors.

This general technique is reminiscent of a metal 3D printing method we’ve seen before. We more frequently see this process run in reverse to cut metal.

Lit up coffee table

Smart Coffee Table To Guide Your Commute

One of the simple pleasures of life is enjoying a drive to work… only to get stuck in traffic that you could’ve known about if you just checked before your daily commute. Who are we kidding? There’s almost nothing worse. [Michael Rechtin] saw this as a great opportunity to spruce up his living room with something practical, a coffee table that serves as a traffic map of Cincinnati.

The table itself is fairly standard with mitered joints at the corners and coated in polyurethane. Bolt on a few legs, and you’ve got a coffee table. But the fun comes with the fancy design on top. A CNC-cut map of Cincinnati is laid out under a sheet of glass. Roads and rivers are painted for a nice touch.

Of course, none of the woodcraft is what gets the attention. This is where the LED light show comes in. On top of the map resides an animated display of either road conditions or the other five pre-programmed animations. The animations include color-coded highways or the good ole’ gamer RGB. To control all of the topographic goodness, a Raspberry Pi is included with some power regulation underneath the table. Every minute, the Pi is able to grab live traffic data from the cloud to display on top.

A looker, this project shows how our hacking fun can be integrated directly into our everyday life in more subtle ways. When we want to decorate ourselves, however, we might want to turn to more personal fare. Check out this miniature liquid simulation pendant for some more everyday design.

Continue reading “Smart Coffee Table To Guide Your Commute”

The PCB Router You Wish You Had Made

The advent of cheap and accessible one-off PCB production has been one of the pivotal moments for electronic experimenters during the last couple of decades. Perhaps a few still etch their own boards, but many hobbiest were happy to put away their ferric chloride. There’s another way to make PCBs, though, which is to mill them. [Tom Nixon] has made a small CNC mill for that purpose, and it’s rather beautiful.

In operation it’s a conventional XYZ mechanism, with a belt drive for the X and Y and a lead screw for the Z axis. The frame is made from aluminium extrusion, and the incidental parts such as the belt tensioners are 3D printed. The write-up is very comprehensive, and takes the reader through all the stages of construction. The brains of the outfit is a Creality 3D printer controller, but he acknowledges that it’s not the best for the job.

It’s certainly not the first PCB router we’ve seen, but it may be one of the nicer ones. If you make a PCB this way, you might like to give it professional-looking solder mask with a laser.