Whirling Shutters On This Field Mill Measure Electrostatic Charges At Distance

Hardly a person hasn’t experienced the sudden, sharp discharge of static electricity, especially on a crisp winter’s day. It usually requires a touch, though, the classic example being a spark from finger to doorknob after scuffing across the carpet. But how would one measure the electrostatic charge of an object without touching it? Something like this field mill, which is capable of measuring electrostatic charge over a range of several meters, will do the trick.

We confess to not having heard of field mills before, and found [Leo Fernekes]’ video documenting his build to be very instructive. Field mills have applications in meteorology, being used to measure the electrostatic state of the atmosphere from the ground. They’ve also played a role in many a scrubbing of rocket launches, to prevent the missile from getting zapped during launch.

[Leo]’s mill works much like the commercial units: a grounded shutter rotates in front of two disc-shaped electrodes, modulating the capacitance of the system relative to the outside world. The two electrodes are fed into a series of transimpedance amplifiers, which boost the AC signal coming from them. A Hall sensor on the shutter allows sampling of the signal to be synchronized to the rotation of the shutter; this not only generates the interrupts needed to sample the sine wave output of the amplifier at its peaks and troughs, but it also measures whether the electrostatic field is positive or negative. Check out the video below for a great explanation and a good looking build with a junk-bin vibe to it.

Meteorological uses aside, we’d love to see this turned toward any of the dozens of Tesla coil builds we’ve seen. From the tiny to the absurd, this field mill should be able to easily measure any Tesla coil’s output with ease.

Continue reading “Whirling Shutters On This Field Mill Measure Electrostatic Charges At Distance”

Gravity-Defying Cosmetics Explained By Science!

There probably comes a point in every female technical journalist’s career at which she covers her first make-up story and wonders aloud whether this is what her life has come to. But this make-up story involves some physics, and follows a series of viral videos in the TikTok community in which specialist cosmetics vloggers were surprised to see lip gloss apparently levitating — defying gravity — from the ends of its applicators. This caught the attention of [Steve Mould], who followed up on his hunch that static electricity might be responsible. What follows in the video below the break are a variety of attempts to recreate and characterise the phenomenon.

The tried-and-trusted approach of rubbing feet on the carpet failing to cause any movement in the damp atmosphere of a British January, he’s off to try a Van de Graaff generator Even the hefty electrostatic charge from that failed to produce more than a tiny blip, but did at least give a suggestion that the effect might be electrostatic.

Finally he was able to replicate the beauty vloggers’ results using the FunFlyStick electrostatic toy, with satisfying threads of lip gloss heading off into the air. The FunFlyStick is an interesting device in its own right, being a Van de Graaff generator in toy form and capable of generating significant quantities of charge. The flying lip gloss is an interesting phenomenon, but speaks further about just how much electrostatic charge can accumulate on mundane objects in a dry climate. Those of in damper climes would do well to take note before we travel.

Continue reading “Gravity-Defying Cosmetics Explained By Science!”

DIY Ionizer Clears The Air On A Budget

Have you ever had a good, deep breath of the air near a waterfall, or perhaps after a thunderstorm? That unmistakably fresh smell is due to ionized air, specifically negative ions, and many are the claims concerning their health benefits. A minor industry has sprung up to capitalize on the interest in ionized air, and while [Amaldev] wanted to clean up the Mumbai air coming into his home, he didn’t want to pay a lot for a commercial unit. So he built his own air ionizer for only about $10.

When [Amaldev] dropped this in the Hackaday tip line, he indicated that he’d been taking some heat for the design from Instagram followers. We imagine a fair number of the complaints stem from the cluster of sewing needles that bristle from one end of the PCB and are raised to 6,000 volts by a fifteen-stage Cockcroft-Walton multiplier. That’s sure to raise eyebrows, or possible the hair on one’s head if you happen to brush by the emitters. Or perhaps [Amaldev]’s critics are dubious about the benefits of ionized air; indeed, some commenters on the video below seem to think that the smoke in the closed jar was not precipitated by the ion stream as [Amaldev] claims, but rather somehow was settled by heat or some other trickery.

Neither of those bothers us as much as the direct 230-volt mains connection, though. We’d have preferred to see at least an isolation transformer in there, or perhaps a battery-powered flyback circuit to supply the input to that multiplier. Still, the lesson on cascade multipliers was welcome, and we found the smoke-clearing power of ionized air pretty amazing.

Continue reading “DIY Ionizer Clears The Air On A Budget”

Look Ma, No Glue! Electrostatic Adhesion As If By Magic

One of the projects at the recent Hacker Hotel hacker camp in the Netherlands appeared to have achieved the impossible. A vertical PCB surface was holding pieces of paper as though they were pinned to it as on a notice board, yet there was no adhesive or fixings in sight. Was Harry Potter among the attendees, ready with a crafty bit of magic at a waggle of a wizard’s wand, or was a clever hack at work?

Of course, it was the latter, as [Jana Marie Hemsing], had created an electrostatic adhesion plate because she was curious about the phenomenon. A PCB with extra insulation has an array of conductors on one side that carry a very high voltage. High enough for electrostatic attraction to secure a piece of paper to the PCB.

The voltage is generated from an AC source by a Cockroft-Walton multiplier on the back of the PCB, and the front is coated with Plasti-Dip for insulation. It seems that soldermask is not a reliable insulator at such high voltages.

Using the board, [Jana] was able to attach a piece of paper to it with a shearing force of 5 mN at 3 kV applied voltage, which may not sound like much but appeared to be just enough to carefully pick the contraption up by the piece of paper. The boards are designed for tessellation, so larger arrays could easily be assembled.

We’ve never had a project quite like this one, but we have brought you an electrostatic ping-pong ball accelerator.

Refurbishing A Classic Electrostatic Speaker PSU

Sometimes a project takes longer than it should to land in the Hackaday in-tray, but when we read about it there’s such gold to be found that it’s worth sharing with you our readers despite its slight lack of freshness. So it is with [Andrew Back]’s refurbishment of his Quad electrostatic speaker system power supply, it may have been published back in August but the glimpse it gives us into these legendary audio components is fascinating.

The inner workings of an electrostatic loudspeaker
The inner workings of an electrostatic loudspeaker

An electrostatic speaker is in effect a capacitor with a very large surface area, of which one plate is a flexible membrane suspended between two pieces of acoustically transparent mesh that form the other plates. A very high DC bias voltage in the multiple kilovolts region is applied across the capacitor, and the audio is superimposed upon it at a peak-to-peak voltage of somewhere under a kilovolt through a step-up transformer from the audio amplifier. There are some refinements such as that the audio is fed as a push-pull signal to the opposing mesh plates and that there are bass and treble panels with different thickness membranes, but these speakers are otherwise surprisingly simple devices.

The problem with [Andrew]’s speakers became apparent when he took a high voltage probe to them, one speaker delivered 3 kV from its power supply while the other delivered only 1 kV. Each supply took the form of a mains transformer and a voltage multiplier board, so from there it became a case of replacing the aged diodes and capacitors with modern equivalents before applying an insulating layer for safety.

Electrostatic speakers are no stranger to Hackaday, we’ve taken an in-depth look at them in the past. You may also find some of our colleague [Steven Dufresne]’s writing on the matter to be of interest, on measuring high voltages, and his experience wrangling high voltage.

Better Motion Through Electrostatic Actuators

If you want something to move with electricity, odds are you’ll be using magnets. Deep inside every servo, every motor, and every linear actuator is a magnet and some coils of wire. There is another way of making things move, though: electrostatics. These are usually seen in tiny MEMS devices, and now we have tiny little electrostatic speakers making their way into phones and other miniature devices.

For [Nathann]’s Hackaday Prize entry, he’s building electrostatic actuators on the cheap, and not just tiny ones, either. He’s building ‘human’ scale electrostatic devices.

The reason electrostatic devices are usually very small is simple: the force of any actuator is dependent on the distance between the plates and the voltage. Moving the plates closer together is right out, or else they would be touching, so the solution to building bigger electrostatic actuators is increasing the voltage. [Nathann] is doing this with a cheap boost converter that’s actually sold as a taser module. These modules are small, output about 800kV, and cost around five bucks.

The prototype for this project is basically a 3D printed box with intersecting fins. These fins are covered in aluminum foil, and the box is filled with oil to prevent arcing. Will it work? That remains to be seen, but this project is a great example of what can be done with some creative part sourcing, a 3D printer, and a tiny bit of know-how. It’s some of the best work the Hackaday Prize has to offer, and we’re amazed that [Nathann] put in the work to make this happen.

Electrostatically Accelerated Ping-Pong Ball Travels The Circuit

There is a special breed of hardware hacker whose playground lies in the high voltage arena. Their bench sizzles with the ozone and plasma of Tesla coils, and perhaps it’s best not to approach it without a handy fluorescent light tube to sniff for unseen hazards. There are many amazing things that can come of these experiments, and fortunately for those of us who lack the means or courage to experiment with them there are many YouTube videos to satisfy our curiosity.

One such comes from [Plasma channel], in the form of a table-top ping-pong ball accelerator. It lacks impressive sparks  but makes up for it in scientific edification, because it uses static electricity to send a conductive-paint-coated ping-pong ball spinning round the inside of a curved glass bowl. It does this using alternate positive and negatively charged strips of aluminium tape on the inside of the bowl, each of which charges the ball as it rolls over it, then giving it a bit of repulsive force to keep it spinning. His power comes from a couple of small Wimshurst machines, but no doubt other similar generators could be used instead.

The whole is an entertaining if a little hazardous talking point, and a fun weekend build. The parts are easy enough to find that you might even have them to hand. If continued electrostatic diversion floats your boat, you might like to read our recent excursion into the subject.

Continue reading “Electrostatically Accelerated Ping-Pong Ball Travels The Circuit”