Building An Open Hardware EBook Reader

On the whole, hackers aren’t overly fond of other people telling them what they can and cannot do with the hardware or software they’ve purchased. Unfortunately, it’s becoming more and more difficult to avoid DRM and other Draconian rules and limitations as time goes on. Digital “eBooks” and the devices that are used to view them are often the subject of such scrutiny, which is why [Joey Castillo] has made it his mission to develop a open hardware eReader that truly belongs to the user.

[Joey] has been working on what he calls the “The Open Book Project” for a few months now, and he’s just recently announced that the first reader has been successfully assembled and powered up. As is usually the case, a few hardware issues were identified with this initial prototype. But it sounds like the device was largely functional, and only a few relatively minor tweaks to the board layout and components should be necessary before the hardware is ready for the masses.

An earlier prototype, using the Adafruit Feather

If you’re feeling a bit of déjà vu seeing this, don’t worry. The Open Book Project has taken a somewhat circuitous path to get to this first prototype, and [Joey] had previously developed and built the “eBook Feather Wing”. While they look very similar, that earlier incarnation required an Adafruit Feather to operate and was used to help refine the firmware and design concepts that would go into the final hardware.

The Open Book is powered by a ATSAMD51N19A processor with a GD25Q16 2MB flash chip to hold the CircuitPython code, and a microSD slot to store the actual book files. It also features support for audio output via a standard 3.5 mm headset jack, an RGB status LED, and expansion ports that tap into the I2C interface for adding whatever other hardware you can dream up.

One of the most interesting aspects of this Creative Commons licensed reader is the extensive self documentation [Joey] has included on the silkscreen. Every major component on the back of the PCB has a small description of its purpose and in some cases even a breakdown of the pin assignments. The idea being that it not only makes the device easier to assemble and debug, but that it can also explain to the curious user what everything on the board does and why it’s necessary. It’s a concept that makes perfect sense given the goals of the Open Book Project, and something that we frankly would love to see more of.

[Marc Juul] presented his work on a FOSS operating system for older-model Kindles at HOPE XII as a way to avoid Orwellian monitoring of the user’s reading habits, so it’s interesting to see somebody take this idea to the next level with completely libre reader hardware. Unfortunately none of this addresses the limited availability of DRM-free eBooks, but one step at a time.

Turning A Page With Your Voice

[Justin]’s friend [Steve] injured his spine a while ago, and after asking what would make [Steve]’s life simpler, the answer was easy. [Steve] missed reading books. Sure, e-readers exist, but you still need to turn the page. Now [Steve] can do that with his voice thanks to some microcontrollers, Bluetooth modules, and a voice recognition module.

A voice-activated page turner wasn’t the first attempt at giving [Steve] the ability to turn a page on a Kindle. The first prototype was a big blue button that sent a keyboard code for ‘right arrow’ over Bluetooth, turning a book one page at a time. This worked well until multiple pages turned, and with no back button it was a major nuisance.

After playing with the voice recognition in an Amazon Echo, [Steve] and [Justin] wondered if the same voice recognition technology could be applied to page turns on a Kindle. With a voice recognition Arduino shield from SparkFun it was easy to detect a ‘page down’ command. A Bluetooth module sends HID commands to a Kindle, allowing [Steve] to read a book with only his voice.

[Justin] put all the design files for this build up on Github.

Kindle Hack

Unlock Your Demo Kindle Paperwhite

If you’ve been holding off on upgrading your kindle, this project might inspire you to finally bite the bullet. [WarriorRocker] recently saved quite a few dollars on his Kindle upgrade by using a demo unit. Of course, it’s not as simple as just finding a demo unit and booting it up. There’s some hacking involved.

[WarriorRocker] found his Kindle Paperwhite demo unit on an online auction site for just $20. Kindles are great for reading but also make popular displays for your own projects. This used display model was much less expensive than a new unit, which makes sense considering it had probably received its share of abuse from the consumers of some retail store. The problem with a demo unit is that the firmware that comes with it is very limited, and can’t be used to sync up with your Amazon account. That’s where the hacking comes in.

pwdu-01The first step was to crack open the case and locate the serial port. [WarriorRocker] soldered a small three pin header to the pads to make it easier to work on his device as needed. He then connected the Kindle to his PC using a small serial to USB adapter. Pulling up the command prompt was as simple as running Putty and connecting to the correct COM port. If the wires are hooked up correctly, then it just takes a press of the enter key to pull up the login prompt.

The next step requires root access. The root password for each unit is related to the unit’s serial number. [WarriorRocker] obtained the serial number by rebooting the Kindle while the Serial connection was still open. The boot sequence will spit out the number. This number can then be entered in to an online tool to generate possible root passwords. The tool is available on [WarriorRocker’s] project page linked above.

Next, the Kindle needs to be rebooted into diagnostic mode. This is because root logins are not allowed while the device is booted to the system partition. To enter diagnostic mode, [WarriorRocker] had to press enter over and over during the boot sequence in order to kill the automatic boot process. Then he checked some environment variables to locate the memory address where the diagnostic mode is stored. One more command tells the system to boot to that address and into diagnostic mode.

The last step of the process begins by mounting the Kindle as a USB storage device and copying over the stock Kindle firmware image. Next [WarriorRocker] had to exit the diagnostic menu and return to a root command prompt. Finally, he used the dd command to copy the image to the Kindle’s partition bit by bit. Fifteen minutes and one reboot later and the Kindle was working just as it should. [WarriorRocker] even notes that the 3G connection still works. Not bad for $20 and an hour or two of work.

From EPaper Badge To Weather Station

ePaper Weather Station

[Jeremy Blum] converted his 2013 Open Hardware Summit badge, also known as the BADGEr, into an ePaper weather station. We’ve looked at the 2013 OHS badge in the past, and the included open source RePaper display makes it an interesting platform to hack.

To fetch weather data, the badge is connected to a Raspberry Pi using an FTDI cable. A Python script uses the Python Weather API to poll for weather data. It then sends a series of commands to the BADGEr using pySerial which selects the correct image, and inserts the current weather data. Finally, a cronjob is used to run the script periodically, providing regular weather updates.

If you happen to have one of the badges, [Jeremy] has provided all of the files you’ll need to build your own weather station on Github. Otherwise, you can take a look at the RePaper project and WyoLum’s eReader Arduino Library to build your own ePaper project.

Hackaday Links: October 6, 2013

hackaday-links-chain

The iBeacon has been all over the interwebs lately. Here’s a riff on the Arduino Pro MIni that adds a BLE module. It can be used to make an iBeacon clone. You can also hack a VTag keyfinder to operate in much the same way.

Remember that post about pulling a QR Code generator into Google Docs? One could argue that the best use of this functionality is to add labels to your parts storage that lead back to the product page for the component. [Thanks Nicholas]

[Michael] wrote in to share his crowd funding campaign. He is a school teacher and wants to publish a detective story that gets kids excited about STEM.

Our own [James Hobson] made the first cut to be [Adam Savage’s] new assistant. He’s the [TheHacksmith] (read our staff page if you don’t believe us) and is the third entry featured in this vignette. Apparently they’ve got something against Canadians because they say he’s ineligible due to his nationality!?

If you’ve ever been confused about the features of different Xbee modules this comparison chart may be of assistance.

A couple of weeks ago we learned about a contest put on by TheControllerProject. [TouchStone936] gets credit for quick, easy, and functional. His solution to making shoulder buttons more accessible includes hot-glue, a golf tee, and a binder clip. Pretty clever!

Wanting a better color of backlight for his eReader, [Vivek Gani] cracked it open and applied Kapton Tape as a gel to soften the hue.

And finally something very silly. If you put a strong enough prop on the front, you can get just about anything to fly. This instance involves a flying pizza box which to us looks particularly un-flight-worthy. [via Gizmodo]

Full-color EBook Reader Needs Only 8-bits Of Muscle

[Rossum’s] still coming up with great ways to use his microtouch hardware. This time, he’s taken his inspiration from Amazon’s announcement that a full-color eBook reader (and movie player) is on the way. Judging from the video after the break, his fully functional reader is a big win for the device.

You’re probably familiar with the hardware, an ATmega644-based board connected to a touch sensitive LCD screen. You can make your own or buy one pre-assembled (but currently out-of-stock). The board has a microSD card slot making it quite easy to add books to the device. At the start of the project [Rossum] thought he might be able to read ePub files directly, but the embedded images, and unzip function needed to open the package file is a bit too much for the 8-bit processor’s restrictions. One simple step does the trick. A helper script can be used to format the files before transferring them to the device. This does the unzipping, scales the images, and repaginates the text into a format friendly for the display size.

Now if we only had a nice little case to house the hardware we’d be in business.

Continue reading “Full-color EBook Reader Needs Only 8-bits Of Muscle”

FrankenKindle: Building An Alternate Kindle Keyboard

If you’ve ever thought the Kindle keyboard was a bit cramped you’re not alone. [Glenn’s] been working on developing an external keyboard for the Kindle for quite some time. It may not make easier for everyone to use, but he’s motivated to improve usability for his sister who has Cerebral Palsy.

We see a lot of keyboard hacks that solder straight to the pads under the buttons, but for a compact device like the Kindle this would really mess things up. Instead of going that route, [Glenn] sourced a 20-pin Flexible Flat Cable and breakout board that match the internal Kindle connector. The prototype seen above uses a TS3A5017 serial multiplexer chip to simulate the keyboard button presses. That multiplexer is driven by a Teensy++ microcontroller board which is monitoring a larger set of buttons on the V.Reader seen above. Check out the video after the break for a brief demonstration, then look around at the rest of [Glenn’s] blog posts to view different steps of the development cycle.

Continue reading “FrankenKindle: Building An Alternate Kindle Keyboard”