For All Their Expense, Electric Cars Are Still The Cheapest

A criticism that we have leveled at the move from internal combustion vehicles to electric ones is that their expense can put them well beyond the range of the not-so-well-heeled motorist. Many of the electric vehicles we’ve seen thus far have been niche models marketed as luxury accessories, and thus come with a specification and list price to match. It’s interesting then to see a European report from LeasePlan looking at vehicle ownership costs which reveals that the total yearly cost of ownership (TCO) for an electric car has is now cheaper that comparable internal combustion vehicles across the whole continent in all but the fiercely competitive sub-compact segment.

TCO includes depreciation, taxes and insurance, fuel, and maintenance. Perhaps the most interesting story lies in electric cars progressing from being a high-depreciation, risky purchase to something you can sell on the second-hand market, even if they cost more up front. For example, the electric VW ID3 costs around $11,000 more than the comparable gas-powered VW Golf up front, but the higher resale price later offsets this and helps keep the TCO lower.

We’ve been following electric vehicles for a while now in the hope that an electric people’s car would surface, and have at times vented our frustration on the matter. It’s encouraging to see this particular trend as we believe it will encourage manufacturers to produce more accessible electric vehicles, especially given that we’ve just complained that driving electric seems like more of a rich man’s game.

(via Heise)

Header image: CEphoto, Uwe Aranas / CC-BY-SA-3.0.

Battery pack of e-bike being welded

Extending An E-Bike Range From Good To Wheelie Good

It may not look like it in some parts of the world, but electric vehicles are gaining more and more market share over traditional forms of transportation. The fastest-growing segment is the e-bike, which some say are growing at 16x the rate of conventional bikes (which have grown at 15% during the pandemic). [Jacques Mattheij] rides an S-Pedelec, which is a sort of cross between a moped and an e-bike. There were a few downsides, and one of those was the pitiful range, which needed to be significantly upgraded.

The S-Pedelec that [Jacques] purchased is technically considered a moped, which means it needs to ride in traffic. The 500 watt-hour battery would only take him 45km (~28 miles) on a good day, which isn’t too bad but a problem if your battery runs down while in traffic, struggling to pedal a big heavy bicycle-like thing at car speed. You can swap batteries quickly, but carrying large unsecured extra batteries is a pain, and you need to stop to change them.

There were a few challenges to adding more batteries. The onboard BMS (battery management system) was incredibly picky with DRM and fussy about how many extra cells he could add. The solution that [Jacques] went with was to add an external balancer. This allowed him to add as many cells as he wanted while keeping the BMS happy. The battery geometry is a little wonky as he wanted to keep the pack within the frame. Putting it over the rear wheel would shift the center of gravity higher, changing the bike’s handling. After significant research and preparation, [Jacques] welded his custom battery back together with a spot welder. The final capacity came in at 2150wh (much better than the initial 500wh). An added benefit of the extra range is the higher speed, as the bike stays in the higher voltage domain for much longer. In eco mode, it can do 500km or 180km at full power.

It’s awe-inspiring, and we’re looking forward to seeing more e-bikes in the future. Maybe one day we’ll have tesla coil wireless e-bikes, but until then, we need to make do with battery packs.

Axial Flux Motors For Electric Vehicles

In the everything old is new again folder, [Lesics] has a good overview of axial flux motors. These are promising for electric vehicles, especially aircraft, since the motors should have high torque to weight ratio. The reason this is actually something old is that the early generators built by Faraday were actually of the axial flux type. Soon, though, radial flux generators and motors became the norm.

The simple explanation is that in a radial system, the magnetic flux lines are perpendicular to the axis of rotation. In the axial system, the flux lines are parallel to the axis of rotation. There’s more to it than just that of course, and the video below has nice animations showing how it all works.

While these are not very common, they do exist even today. The Lynch motor, for example, is a type of axial flux motor that dates back to 1979. Usually, the impetus for using an axial flux motor is the ease of construction, but with the right design, they can be quite efficient (up to 96% according to the video).

We’ve seen plenty of PCB motors and most of those are axial in design. Not all of them, though.

Continue reading “Axial Flux Motors For Electric Vehicles”

Nissan Leaf Zooms By with 110KW power after Inverter swap and hack

Open Source Hot Rod Mod Gives More Power To EV Owners

Meet [Daniel Öster]. [Daniel] is a self-professed petrolhead. In other words, he’s a hot rodder who can’t leave well enough alone. Just because he’s driving a 2012 Nissan Leaf doesn’t mean he isn’t looking for a bit more kick. Having already upgraded the battery, [Daniel] turned his attention to upgrading the 80KW inverter. Not only was [Daniel] successful, but the work has been documented and the Open Source code made available on GitHub. Part of [Daniel]’s mission is to open up otherwise closed ecosystems and make EV hacking and repair approachable by mere mortals.

To get an extra 50hp, [Daniel] could have just swapped in the 110KW drivetrain from a 2018 or newer Leaf, but a less expensive route of swapping in only the 110KW inverter was chosen. By changing out just the inverter, the modification becomes more affordable for others to do. [Daniel] expertly documents how the new 110KW inverter has to be matched to the existing motor by setting a resolver correction value in the inverter.

Swapping Connectors for the new Inverter
Not for the faint of heart, the inverter swap requires changing connectors to a later style.

Cutting into the wiring harness of a vehicle that one is still making payments on is an exercise reserved for only the most dedicated modders, but a change in connectors between 2012 and 2018 made it necessary. The only tools needed were wire cutters, a soldering iron, heat shrink, and perhaps some liquid courage.

Although the hack was successful, no performance gains were had initially, because the CAN bus signal going to the inverter never told it to provide more than the original 80KW. A CAN bus Man In The Middle attack was done by adding a CAN bridge device that listens to traffic on the CAN bus and bends it to [Daniel]’s will. By multiplying the KW signal by 1.3, the 80KW signal becomes 110KW, and full Ludicrous Speed is achieved! Excellent gains in  0-100kph times are seen, but [Daniel] isn’t done. His next hack will be to put in a 160KW inverter for even more go-pedal madness.

Be sure to watch the introduction video below the break. You might also be interested in Nissan Leaf hacks we’ve featured previously such as retrofitting a fast charging port, salvaging batteries from wrecks, and partly resolving serious charging flaws.

Continue reading “Open Source Hot Rod Mod Gives More Power To EV Owners”

Recycling Will Be Key To The Electric Vehicle Future

Electric vehicles have become a mainstay in the global automotive marketplace, taking on their gasoline rivals and steadily chewing out their own slice of market share, year after year. Government mandates to end the sale of polluting internal combustion engine vehicles and subsidies on cleaner cars promise to conspire to create an electric vehicle boom.

The result should be much cleaner air, as generating electricity in even the dirtiest power plants is far cleaner and more efficient than millions of individual engines puttering about the place. However, if the electric car is to reign supreme, they’ll need to be built in ever greater numbers. To do that is going to take huge amounts of certain materials that can be expensive and sometimes in very limited supply. Thus, to help support the EV boom, recycling of these materials may come to play a very important role.

Continue reading “Recycling Will Be Key To The Electric Vehicle Future”

Electric Land Speed Racing Can Be Lightning Fast

Land speed racing is a pursuit of ultimate speed above all else. Most cars typically run on huge, flat salt pans, and racers run flat out for miles in a straight line, attempting to push their machines to the limit. Like most motorsports, the history of land speed racing has traditionally been centred around internal combustion, but electric racers have long been out there chasing land speed records as well.

The Need For Speed

At the most famous land speed trials, such as Bonneville’s Speed Week, speed runs take place over miles and miles of open salt, with timing traps along the way to determine competitor’s speeds. These tracks are long enough that acceleration is of little concern, which is of great benefit to electric runners. Additionally, only one or two runs is required to set a record. This means that heavy batteries aren’t always needed, as the distance a competitor must travel is short, and even if the batteries are heavy, it doesn’t excessively affect top speed.

With an eye to that, land speed competitors in electric classes are typically classified into weight classes. This is due to the fact that bigger, heavier battery packs can deliver more current, and thus potentially have a performance advantage over lighter vehicles. Thus, typical classes run by most salt flats competitions involve the E1 class, which allows for vehicles under 1100 lbs, the E2 class, for vehicles up to 2200 lbs, and the E3 class, which is for anything 2200 lbs and above. The FIA also publish their own set of classes, again separated by weight, though to a much more granular degree.

Procedures for setting records vary depending on the venue and the record in question. Local records at salt venues like El Mirage can typically be broken with a single run faster than the standing record, while Bonneville Speed Week competitors must set a higher average speed across two runs on two consecutive days. FIA records differ again, and are perhaps the most stringent, requiring competitors to set a faster average across two runs in opposite directions, set within an hour of each other, to attempt to minimise the effect of wind on the result. Things can sometimes get confusing, as many FIA records, for example, are set at the Bonneville salt flats, but not actually in Speed Week competition or by Speed Week rules. Continue reading “Electric Land Speed Racing Can Be Lightning Fast”

Retrofitting Fast Charging To A Nissan Leaf EV

Electric cars have been around for a while now, and thus they’re starting to get chopped up and modded just like any other car. [Daniel Öster] is one such person doing the work, and recently posted his efforts to retrofit fast charging to an base-model Nissan Leaf that didn’t ship with the feature.

[Daniel] uses special high-voltage insulated tools when working on EVs for safety.
It’s an involved swap, requiring the substitution of several parts and surgery on the wiring loom. Cost of components was just 700 euros but the swap required 20 hours of labor. The vehicle in question is an early model Leaf that was already fitted with an upgraded 40 kWh battery, and the owner desired an upgrade to CHAdeMO fast charging to better use the larger pack.

The swap required the power distribution unit to be replaced, and the CHAdeMO port to be installed in the front of the car. The vehicle control module (VCM) also had to be opened in order to run a wire to a relay to activate the fast charging subsystem. Finally, wires had to be spliced to get everything to play nicely between the car and the fast charger.

[Daniel] had the benefit of quality forum resources and a Nissan Leaf that already had CHAdeMO to reference, which helped a lot. At the end of the day, the fast charger worked first time, much to [Daniel]’s relief. We’ve featured his work before, too. Video after the break.

Continue reading “Retrofitting Fast Charging To A Nissan Leaf EV”