Fail Of The Week: Alternator Powered Electric Go-Kart Doesn’t Go

What do you give a six-year-old who loves going fast but doesn’t like loud noises? Convert a gas go-kart to electric of course! (Video, embedded below.) That goal started [Robert Dunn] of Aging Wheels down a long path toward a go-kart that almost, but doesn’t quite… work.

If you’ve watched any of [Robert’s] videos, you know he doesn’t take the easy path. The man owns a Trabant and Reliant Robin after all. Rather than buy a battery pack, he built his own 5S24P pack from individual LiFePO4 cells. Those cells generally are spot welded, so [Robert] built an Arduino-controlled heirloom-quality spot welder. Now while the welder could handle thin nickel strips, it wasn’t up the task of welding high current nickel-plated copper. When attempts at a solution failed, [Robert] built a system of clamped copper bus bars to handle the high current connections for the batteries.

If batteries weren’t hard enough, [Robert] also decided he wasn’t going to use an off-the-shelf motor for this project. He converted a car alternator to operate as a brushless motor. We’ve covered projects using this sort of conversion before. Our own [Jenny List] even wrote a tutorial on it. [Robert] unfortunately has had no end of trouble with his build.

Continue reading “Fail Of The Week: Alternator Powered Electric Go-Kart Doesn’t Go”

Lego Go-Kart Scores Radio Control

LEGO has always been an excellent toy for both play and learning, and the Technic sets are a great starting point for any budding engineer. Not content to rest on their plastic, blocky laurels, LEGO introduced more advanced parts over the years, such as motors and battery packs to allow builders to propel their creations. Combine this mechanical philosophy with [Matt]’s Giant Lego Go-Kart and you have one heck of a project.

It all started months ago, when [Matt] built his original Giant Lego Go-Kart, a 5-times scaled up model of the original kit #1972-1. Achieved through the wonder of 3D printing, he had sized it up based off the largest parts he could fit on his printer. The Youtube video led to commenters asking – could it be driven?

He decided that radio control was definitely a possibility. Not content to simply bolt on a series of motors to control the drive and steering, he took the effort to build scaled up replica LEGO motors, even taking care to emulate the old-school connectors as well. A particularly nice touch was the LEGO antenna, concealing the Orange RX radio receiver.

There were some hiccups – at this scale & with [Matt]’s parts, the LEGO force just isn’t strong enough to hold everything together. With a handful of zipties and a few squirts of glue, however, the giant ‘kart was drifting around the carpark with ease and hitting up to 26km/h.

In the end, the build is impressive not just for its performance but the attention to detail in faithfully recreating the LEGO aesthetic. As for the next step, we’d like to know what you think – how could this be scaled up to take a human driver? Is it possible? You decide.

Quintuple-Sized LEGO Go-Kart

[Matt Denton] was inspired by [James Bruton]’s scaled up LEGO and decided to create his own giant LEGO project. He found a classic model that he wanted to scale up.  1985’s Technic Go-Kart (set #1972) contained 98 pieces and seemed manageable.

He wanted to create something his 8yo nephew [Ruben] could sit in, but had to rule out a fully kid-sized go-kart. It had also to be (at least somewhat) economical with regards to plastic and printing time. [Matt] settled on sizing the largest piece—the 2×8 plate—to fit diagonally on the 11”x11” bed of his Lulzbot Taz5.

It took 168 hours to print all 98 parts (some of them in a series of smaller pieces), 5 kilos total of filament at mostly 20% infill. The resulting car can be assembled and disassembled just like LEGO—no glue! The rack and pinion steering actually works and the Ninjaflex-tired wheels roll as one would expect. So, pretty much the same as the real model only five times bigger. The only non-LEGO components are threaded rods down the middle of his cross axles as well as the hose, just Neoprene hosing from a hardware store.

[Matt] is well-known to Hackaday readers, being one of the original BB-8 builders as well as co-creator of the Mantis walking robot. He’ll be on hand this weekend in Maker Faire Hannover to share this project, Mantis, and others. Continue reading “Quintuple-Sized LEGO Go-Kart”

DIY Electric Beach Luge Is A Thrill

[John Dingley] describes his Electric Beach Luge Project as an exciting mashup between “a downhill luge board, a kite surf buggy, a go-kart, and a Star Wars Land Speeder” and it’s fresh from a successful test run. What’s not to like? The DIY experimental vehicle was made to run on long, flat, firm stretches of sand while keeping the rider as close to the ground as possible. The Beach Luge is mainly intended to be ridden while lying on one’s back, luge-style, but it’s also possible to lay prone in the “Superman” position.

The whole unit was built from the ground up, but [John] points out that the design isn’t particularly complicated. There is no fancy self-balancing or suspension involved and steering is simple. A tube bender and a welder took care of making the frame. The rest is mainly used go-kart parts obtained cheaply from eBay, driven by a 500W 24V electric motor from an old Golf Kart. Like a luge sled, the goal is for the vehicle itself to interfere as little as possible between the user and the earth to make the experience as visceral as it can be.

You can see it in action in the two videos embedded below, but even more videos and some great pictures are available on the project’s page. [John] says it’s great fun to ride, but feels it could use twice as much power!

Continue reading “DIY Electric Beach Luge Is A Thrill”

Hoverchair For Your Hoverboard Turns Your Segway Into A Go-Kart

Want to get somewhere safely, but all you have is a Segway? An afternoon spent tinkering can turn your Segway into a lounging cruiser with this hoverseat attachment, just like YouTuber [Inflatable Boats]’s hot new ride.

The backbone of the cart is the Segway Mini Pro. An aluminium frame attaches to the Segway via an eye-bolt and two carabiners, the larger of which has some tape wrapped around it to reduce wear. A swivel caster is attached with u-bolts to support the weight  of the rider along the middle of this makeshift go-cart. Pushing on a t-handle made of pvc — connected to the Segway’s knee brace with a simple strap — engages the motor in lieu of the normal lean-to-go-forward action. Turning is simply done by swinging the handle or pressing with your feet.

Continue reading “Hoverchair For Your Hoverboard Turns Your Segway Into A Go-Kart”

Alternator Becomes Motor For This Electric Go-kart

Growing up in the 70s and 80s, a go-kart was a quick ticket to coolness, second maybe to a mini-bike. In both cases, a welded steel tube frame and a cast-off lawnmower engine were all that stood between you and neighborhood glory. Looks like a couple of engineering students caught the retro juvenile delinquent bug and built this electric go-kart for their final project.

While the frame for [Adrian Georgescu] and [Masoud Johnson]’s build was a second-hand find, the powertrain is all custom. They targeted a power output of 3 kW but found no affordable motors in that range. So, in true hacker fashion, they rolled their own motor from a used Subaru alternator. The three-phase motor controller came from an electric scooter, three LiPo packs provide the juice, and a pair of Arduinos takes care of throttle control, speed sensing, and sending data to the virtual dashboard on an Android phone. Some lights and a snappy red and black paint job finished off the build. While the video below shows that the acceleration isn’t exactly neck-snapping in the Tesla style, the e-kart can build up to a good speed – 53 km/h. Not too shabby, and no deafening engine right behind your head.

If you’ve got the e-kart bug, best check out some of our previous posts, like this kart built from off-the-shelf components, or this four-wheel-drive mini-kart. Any way you build it, you’ll rule the cul-de-sac.

Continue reading “Alternator Becomes Motor For This Electric Go-kart”

Electric Go Kart has More Features than a Tesla

Making Mario Kart Real

If you’ve ever had a casual go-kart experience, you might be able to relate to [HowToLou]. He noticed that whenever he tried to race, the same situation inevitably always happened. One racer would end up in front of the pack, and no one else would be able to pass them. The result was more of a caravan of go-karts than an actual race. That’s when he realized that video games like Mario Kart had already figured out how to fix this problem long ago. [Lou] took ideas from these games and implemented them onto a real life go-kart in order to improve the experience. The result is what he calls a Flash Kart.

The key to improving the experience was to add more features that you don’t normally get in a real word go-karting experience. The Flash Kart uses an electronic drive system that is controlled by computer. This setup allows the computer to limit the speed of the kart so they are all the same. The system includes a Logitech gaming steering wheel with built-in control buttons. There is also a color LCD screen mounted as a heads up display. The screen displays the racer’s speed in miles per hour, as well as multiple MP3 music tracks to choose from. The system provides the user with a limited number of speed boost tokens, listed on the heads up display. The user can also view their current ranking, their location on the track, or even get a view directly behind them.

The back of the kart includes a 23″ LCD screen that shows other players who you are and what team you are on. For added fun, the rider can display taunting messages to other racers using this screen. The front of the kart includes a laser cannon for shooting other karts as well as a “token scoop” sensor. This allows the riders to pick up virtual items such as laser cannon ammo, shields, or extra speed boost tokens.

To pack in all of this added functionality, [Lou] started with a typical go-kart chassis. From there, he built a custom fiber glass shell for the back-end. This houses most of the sensitive electronics. The system is powered by three 12V deep cycle batteries. A 15HP electric motor drives the rear wheels. The throttle is controlled with a gas pedal that simply feeds to a sensor that is hooked up to the control computer. The heart of the system is a computer that runs on a 2.6Ghz small footprint Zotac motherboard with Windows XP. The software is custom written in C#. The computer is plugged into a miniLAB 1008 interface board. This is how it communicates with all of the various sensors. The interface board is also used to control a number of relays which in turn control the speed of the kart.

Unfortunately [Lou] built this kart years ago and doesn’t include many details about what sensors he is using, or how the software works. Still, this was such a cool idea that we had to share it. Be sure to watch [Lou’s] video below to see the kart in action. Continue reading “Making Mario Kart Real”