660 FPS Raspberry Pi Video Captures The Moment In Extreme Slo-Mo

Filming in slow-motion has long become a standard feature on the higher end of the smartphone spectrum, and can turn the most trivial physical activity into a majestic action shot to share on social media. It also unveils some little wonders of nature that are otherwise hidden to our eyes: the formation of a lightning flash during a thunderstorm, a hummingbird flapping its wings, or an avocado reaching that perfect moment of ripeness. Altogether, it’s a fun way of recording videos, and as [Robert Elder] shows, something you can do with a few dollars worth of Raspberry Pi equipment at a whopping rate of 660 FPS, if you can live with some limitations.

Taking the classic 24 FPS, this will turn a one-second video into a nearly half-minute long slo-mo-fest. To achieve such a frame rate in the first place, [Robert] uses [Hermann-SW]’s modified version of raspiraw to get raw image data straight from the camera sensor to the Pi’s memory, leaving all the heavy lifting of processing it into an actual video for after all the frames are retrieved. RAM size is of course one limiting factor for recording length, but memory bandwidth is the bigger problem, restricting the resolution to 64×640 pixels on the cheaper $6 camera model he uses. Yes, sixty-four pixels height — but hey, look at that super wide-screen aspect ratio!

While you won’t get the highest quality out of this, it’s still an exciting and inexpensive way to play around with slow motion. You can always step up your game though, and have a look at this DIY high-speed camera instead. And well, here’s one mounted on a lawnmower blade destroying anything but a printer.

Continue reading “660 FPS Raspberry Pi Video Captures The Moment In Extreme Slo-Mo”

Bullet-time Video Effect By Throwing Your Phone Around

Ski areas are setting formal policies for drones left and right, but what happens when your drone isn’t a drone but is instead a tethered iPhone with wings swinging around you like a ball-and-chain flail as you careen down a mountain? [nicvuignier] decided to explore the possibility of capturing bullet-time video of his ski runs by essentially swinging his phone around him on a tether. The phone is attached to a winged carrier of his own design, 3D printed in PLA.

One would think this would likely result in all kinds of disaster, but we haven’t seen the outtakes yet, and the making-of video has an interesting perspective on each of the challenges he encountered in perfecting the carrier, ranging from keeping it stable and upright, to reducing the motion sickness with the spinning perspective, and keeping it durable enough to withstand the harsh environment and protect the phone.

He has open sourced the design, which works for either iPhone or GoPro models, or it is available for preorder if you are worried about catastrophic delamination of your 3D printed model resulting in much more bullet-like projectile motion.

Continue reading “Bullet-time Video Effect By Throwing Your Phone Around”

Robots And Crickets

If you watch science fiction movies, the robots of the future look like us. The truth is, though, many tasks go better when robots don’t look like us. Sometimes they are unique to a particular job or sometimes it is useful to draw inspiration from something other than a human being. One professor at Johns Hopkins along with some students decided to look at spider crickets as an inspiration for a new breed of jumping robots.

Continue reading “Robots And Crickets”

Faking High-speed Video Photography Of Repetitive Events

[Destin] has been doing some high-speed and high-resolution video photography using a standard DSLR. He accomplishes this using a bit of ingenuity to capture images of repetitive events at slightly different points in time.

The banner image above shows a bullet travelling through a set of matchsticks. [Destin] uses the sound of the gun firing to trigger the flash that captures the image. A piezeo transducer picks up the sound, triggering a precision pulse generator. That pulse generator then triggers the flash, adding a delay based on the settings. In this way, [Destin] can capture video by firing a bullet for each frame, but adjusting the delay period of the pulse generator to capture the image when the bullet is in a slightly different place from the previous frame. It’s an old technique, but after some post-processing it produces a high-quality output without sinking thousands of dollars into an actual high-speed camera. Check out the video we’ve embedded after the break.

We like this guy’s style. We saw him strapping a camera onto a chicken back in December and we hope to see a lot more from him in the future.

Continue reading “Faking High-speed Video Photography Of Repetitive Events”

High Speed Video From Cheap Digital Camera

Some researchers from Oxford University have come up with a way to produce high-speed video from a one mega-pixel camera. They’re calling the method Temporal Pixel Multiplexing. This method adds a digital micromirror device in line with the camera lens. These chips house over a million mirrors and can be found in home theater projectors. By placing one in front of the digital camera, a longer exposure can be used while the DMD redirects the light. This way, one high-resolution image actually contains multiple frames of lower-resolution video. The video is still decent quality and, at a far lower cost than common high-speed video equipment, this is a worthwhile trade off.

[Thanks Andrew via NewScientist]