Easy, Secure HTTPS With An ESP8266

Security has always been an issue with IoT devices. Off the shelf devices often have terrible security while DIY solutions can be complicated, needing recompilation every time a website’s fingerprint changes. [Johannes] wrote in to let us know he’s been working on a way to make HTTPS requests easier to do on ESP devices.

The normal ways to do HTTPS with an ESP8266 is to either use Fingerprints, or to use client.setInsecure(). Fingerprints require the user to know exactly which pages the ESP will connect to and extract the Fingerprints from each of those websites. Since the fingerprints change yearly, this means the fingerprint will have to be re-extracted and the code recompiled each time a fingerprint changes. The use of client.setInsecure() is, obviously, insecure. This may not be an issue for your project, but it might be for others.

[Johannes’] solution is to extract the trusted root certificates and store them in PROGMEM. This allows access to any web page, but the root certificates do expire as well. As opposed to the fingerprints, though, they expire after 20 years, rather than every year, so the program can run for a long time before needing recompilation. This solution also doesn’t require any manual steps – the build process runs a script that grabs the certificates and stores them in files so that they can be uploaded to the SPIFFS written to PROGMEM to be used during HTTPS requests.

He’s come up with a fairly straightforward way to have your IoT device connect to whichever web page you want, without having to recompile every once in a while. Hopefully, this will lead to better security for your IoT devices. Take a look at some previous work in this area.

A New Way To Remote Terminal

Thanks to the wonders of the internet, collaborating with others across great distances has become pretty simple. It’s easy now to share computer desktops over a network connection, and even take control of another person’s computer if the need arises. But these graphical tools are often overkill, especially if all we really need is to share a terminal session with someone else over a network.

A new project from [Elis] allows just that: to share an active terminal session over a web browser for anyone else to view. The browser accesses a “secret” URL which grants access to the terminal via a tunnel which is able to live stream the entire session. The server end takes care of all of the work of generating this URL, and it is encrypted with TLS and HTTPS. It also allows for remote control as well as viewing, so it is exceptionally well-featured for being simple and easy to run.

To run this software only a binary is needed, but [Elis] has also made the source code available. Currently he finds it a much more convenient way of administering his Raspberry Pi, but we can see a lot of use for this beyond the occasional headless server. Certainly this makes remote administration easy, but could be used collaboratively among a large group of people as well.

Building A Simple Python API For Internet Of Things Gadgets

It’s no secret that I rather enjoy connecting things to the Internet for fun and profit. One of the tricks I’ve learned along the way is to spin up simple APIs that can be used when prototyping a project. It’s easy to do, and simple to understand so I’m happy to share what has worked for me, using Web2Py as the example (with guest appearances from ESP8266 and NodeMCU).

Barring the times I’m just being silly, there are two reasons I might do this. Most commonly I’ll need to collect data from a device, typically to be stored for later analysis but occasionally to trigger some action on a server in the cloud. Less commonly, I’ll need a device to change its behavior based on instructions received via the Internet.

Etherscan is an example of an API that saves me a lot of work, letting me pull data from Ethereum using a variety of devices.

In the former case, my first option has always been to use IoT frameworks like Thingsboard or Ubidots to receive and display data. They have the advantage of being easy to use, and have rich features. They can even react to data and send instruction back to devices. In the latter case, I usually find myself using an application programming interface (API) – some service open on the Internet that my device can easily request data from, for example the weather, blockchain transactions, or new email notifications.

Occasionally, I end up with a type of data that requires processing or is not well structured for storage on these services, or else I need a device to request data that is private or that no one is presently offering. Most commonly, I need to change some parameter in a few connected devices without the trouble of finding them, opening all the cases, and reprogramming them all.

At these times it’s useful to be able to build simple, short-lived services that fill in these gaps during prototyping. Far from being a secure or consumer-ready product, we just need something we can try out to see if an idea is worth developing further. There are many valid ways to do this, but my first choice is Web2Py, a relatively easy to use open-source framework for developing web applications in Python. It supports both Python 2.7 and 3.0, although we’ll be using Python 3 today.

Continue reading “Building A Simple Python API For Internet Of Things Gadgets”

HTTPS For The Internet Of Things

Every day, we’re connecting more and more devices over the internet. No longer does a household have a single connected computer — there are smartphones, tablets, HVAC systems, deadbolts — you name it, it’s been connected. As the Internet of Things proliferates, it has become readily apparent that security is an issue in this space. [Andreas Spiess] has been working on this very problem, by bringing HTTPS to the ESP8266 and ESP32. 

Being the most popular platform for IOT devices, it makes sense to start with the ESP devices when improving security. In his video, [Andreas] starts at the beginning, covering the basics of SSL, before branching out into how to use these embedded systems with secure cloud services, and the memory requirements to do so. [Andreas] has made the code available on GitHub so it can be readily included in your own projects.

Obviously implementing increased security isn’t free; there’s a cost in terms of processing power, memory, and code complexity. However, such steps are crucial if IOT devices are to become trusted in wider society. A malfunctioning tweeting coffee pot is one thing, but being locked out of your house is another one entirely.

We’ve seen other takes on ESP8266 security before, too. Expect more to come as this field continues to expand.

[Thanks to Baldpower for the tip!]

How The NSA Can Read Your Emails

Since [Snowden]’s release of thousands of classified documents in 2013, one question has tugged at the minds of security researchers: how, exactly, did the NSA apparently intercept VPN traffic, and decrypt SSH and HTTP, allowing the NSA to read millions of personal, private emails from persons around the globe? Every guess is invariably speculation, but a paper presented at the ACM Conference on Computer and Communications Security might shed some light on how the NSA appears to have broken some of the most widespread encryption used on the Internet (PDF).

The relevant encryption discussed in the paper is Diffie–Hellman key exchange (D-H), the encryption used for HTTPS, SSH, and VPN. D-H relies on a shared very large prime number. By performing many, many computations, an attacker could pre-compute a ‘crack’ on an individual prime number, then apply a relatively small computation to decrypt any individual message that uses that prime number. If all applications used a different prime number, this wouldn’t be a problem. This is the difference between cryptography theory and practice; 92% of the top 1 Million Alexa HTTPS domains use the same two prime numbers for D-H. An attacker could pre-compute a crack on those two prime numbers and consequently be able to read nearly all Internet traffic through those servers.

This sort of attack was discussed last spring by the usual security researchers, and in that time the researchers behind the paper have been hard at work. The earlier discussion focused on 512-bit D-H primes and the LogJam exploit. Since then, the researchers have focused on the possibility of cracking longer 768- and 1024-bit D-H primes. They conclude that someone with the resources of cracking a single 1024-bit prime would allow an attacker to decrypt 66% of IPsec VPNs and 26% of SSH servers.

There is a bright side to this revelation: the ability to pre-compute the ‘crack’ on these longer primes is a capability that can only be attained by nation states as it’s on a scale that has been compared to cracking Enigma during WWII. The hardware alone to accomplish this would cost millions of dollars, and although this computation could be done faster with dedicated ASICs or other specialized hardware, this too would require an enormous outlay of cash. The downside to this observation is, of course, the capability to decrypt the most prevalent encryption protocols may be in the hands of our governments. This includes the NSA, China, and anyone else with hundreds of millions of dollars to throw at a black project.

Stumbling Upon An Uber Vulnerability

[Nathan] is a mobile application developer. He was recently debugging one of his new applications when he stumbled into an interesting security vulnerability while running a program called Charles. Charles is a web proxy that allows you to monitor and analyze the web traffic between your computer and the Internet. The program essentially acts as a man in the middle, allowing you to view all of the request and response data and usually giving you the ability to manipulate it.

While debugging his app, [Nathan] realized he was going to need a ride soon. After opening up the Uber app, he it occurred to him that he was still inspecting this traffic. He decided to poke around and see if he could find anything interesting. Communication from the Uber app to the Uber data center is done via HTTPS. This means that it’s encrypted to protect your information. However, if you are trying to inspect your own traffic you can use Charles to sign your own SSL certificate and decrypt all the information. That’s exactly what [Nathan] did. He doesn’t mention it in his blog post, but we have to wonder if the Uber app warned him of the invalid SSL certificate. If not, this could pose a privacy issue for other users if someone were to perform a man in the middle attack on an unsuspecting victim.

[Nathan] poked around the various requests until he saw something intriguing. There was one repeated request that is used by Uber to “receive and communicate rider location, driver availability, application configurations settings and more”. He noticed that within this request, there is a variable called “isAdmin” and it was set to false. [Nathan] used Charles to intercept this request and change the value to true. He wasn’t sure that it would do anything, but sure enough this unlocked some new features normally only accessible to Uber employees. We’re not exactly sure what these features are good for, but obviously they aren’t meant to be used by just anybody.

Lenovo Shipped PC’s With Spyware That Breaks HTTPS

If you’ve ever purchased a new computer then you are probably familiar with the barrage of bloatware that comes pre-installed. Usually there are system tools, antivirus software trials, and a whole bunch of other things that most of us never wanted in the first place. Well now we can add Superfish spyware to the list.

You may wonder what makes this case so special. A lot of PC’s come with software pre-installed that collect usage statistics for the manufacturer. Superfish is a somewhat extreme case of this. The software actually installs a self-signed root HTTPS certificate. Then, the software uses its own certificates for every single HTTPS session the user opens. If you visit your online banking portal for example, you won’t actually get the certificate from your bank. Instead, you’ll receive a certificate signed by Superfish. Your PC will trust it, because it already has the root certificate installed. This is essentially a man in the middle attack performed by software installed by Lenovo. Superfish uses this ability to do things to your encrypted connection including collecting data, and injecting ads.

As if that wasn’t bad enough, their certificate is actually using a deprecated SHA-1 certificate that uses 1024-bit RSA encryption. This level of encryption is weak and susceptible to attack. In fact, it was reported that [Rob Graham], CEO of Errata Security has already cracked the certificate and revealed the private key. With the private key known to the public, an attacker can easily spoof any HTTPS certificate and systems that are infected with Superfish will just trust it. The user will have no idea that they are visiting a fake phishing website.

Since this discovery was made, Lenovo has released a statement saying that Superfish was installed on some systems that shipped between September and December of 2014. They claim that server-side interactions have been disabled since January, which disables Superfish. They have no plans to pre-load Superfish on any new systems.