Intel: High-bandwidth Digital Content Protection Cracked

Intel says that HDCP has been cracked, but they also say that it’s unlikely this information will be used to unlock the copying of anything. Their reasoning for the second statement is that for someone to make this work they would need to produce a computer chip, not something that is worth the effort.

We question that logic. Not so much for Blu-Ray, which is the commonly associated media format that uses HDCP, but for HD digital cable programming. There are folks out there who would like to have the option of recording their HD television shows without renting a DVR from the cable company. CableCard tuners have been mostly absent from the market, making this type of recording difficult or impossible. Now that there’s a proven way to get the encryption key for HDCP how hard would it really be to create a man-in-the-middle device that uses that key to authenticate, decrypt, and funnel the audio and video to another encoder card? We know next-to-nothing about the protocol but why couldn’t any powerful processor, like an ARM, or even an FPGA (both rather inexpensive and readily available) be programmed for this task?

Leave a comment to let us know what you think about HDCP, and what the availability of the master-key really means.

[Thanks Dave]

Dexterous Hexapod Rocks An Atom Processor

[youtube=http://www.youtube.com/watch?v=O3ovrT8pWww]

[Matt Bunting’s] hexapod caught Intel’s eye (and their wallet). This coordinated little bot runs Ubuntu on an Atom Z530 processor, popular in netbooks like the Dell Mini 10, and uses a webcam to coordinate and monitor its motion. Intel picked up two of them from [Matt] to exhibit at trade shows. As you can see, the 18 servos provide some gorgeous motion to the beast. It’s no DJ Roomba but it approaches the zen-like perfection that is the A-Pod.

[Thanks Miked]

Intel 8008 Clock

Every year [Len Bales] designs and builds a new clock. His 2006 clock runs on the classic Intel 8008 microprocessor. The design is definitely not for the faint of heart, but he includes all code, diagrams and a good description on his site. The project is an interesting look into the not-so-distant past of computing. While the function of the project is a clock, it is actually a fully programmable 8008 computer running at 500khz with 16k of memory space and 4io ports. [Len] also links a lot of useful 8008 resources for anyone wanting to tackle a project of their own.

UHF Power Harvesting

hdpowerharvesting

[Alanson Sample] and [Joshua R. Smith] have been experimenting with wireless power transfer for their sensing platform. Their microcontroller of choice is the MSP430, which we used on our e-paper clock. They chose it specifically for its ability to work with low voltages and they discus its specific behavior at different voltages. The first portion of their paper uses a UHF RFID reader to transmit to the sensor’s four stage charge pump. They added a supercap to provide enough power for 24 hours of logging while the node isn’t near a reader. For the second half of the paper, they use a UHF antenna designed for digital TV with the same circuit and pointed it at a television tower ~4.1km away. It had an open circuit voltage of 5.0V and 0.7V across an 8KOhm load, which works out to be 60uW of power. They connected this to the AAA battery terminals of the thermometer/hygrometer pictured above. It worked without issue. The thermometer’s draw on a lab power supply was 25uA at 1.5V.

It’s an interesting approach to powering devices. Do you have an application that needs something like this? For more on wireless power, checkout this earlier post on scratch building RFID tags.

[via DVICE]

Intel 4004 Internals

The silicon wizards at Flylogic have certainly posted an interesting chip this time around. The Intel 4004 was the first widely used microprocessor. The logic gates are much larger than you’d find in modern chips. The unique feature is that each gate is designed to make the most efficient use of the silicon instead of the standardized shapes you find now. They’ve uploaded a full image of the chip.

For an introduction to silicon hacking, we reccomend [bunnie]’s talk from Toorcon and [Karsten]’s talk from 24C3. You can find many more posts on the topic in our silicon tag.

24 Core Ikea Cluster


[Janne] does freelance animation and wanted something with a bit more CPU to get his rendering jobs done. He picked up an Ikea ‘Helmer’ cabinet and refitted it to hold six Intel quad cores, six Gigabyte motherboards with 8GB of ram each and six 400 watt power supplies. He seems happy with it – I think it just needs some custom power wiring and an integrated Gig-E switch to achieve perfection. What? I’m not jealous at all.