Three ZigBee radios in ESD bags, marked "Zigbee Sniffer", "Router" and "Coordinator".

Crash IoT Devices Through Protocol Fuzzing

IoT protocols are a relatively unexplored field compared to most PC-exposed protocols – it’s bothersome to need a whole radio setup before you can tinker on something, and often, for low-level experiments, just any radio won’t do. This means there’s quite a bit of security ground to cover. Now, the U-Fuzz toolkit from [asset-group] helps us make up for it.

Unlike fuzzers you might imagine, U-Fuzz doesn’t go in blindly. This toolkit has provisions to parse protocols and fuzz fields meaningfully, which helps because many of devices will discard packets they deem too malformed. With U-Fuzz, you feed it a couple packet captures, help it make some conclusions about packet and protocol structure, and get suggestions on how to crash your devices in ways not yet foreseen.

This allows for basically arbitrary protocol fuzzing, and to demonstrate, we get examples on 5G, CoAP and ZigBee probing alike, with a list of found CVEs to wrap the README up. As Wikipedia often states, this list is incomplete, and you can help by expanding it. Fuzzing is an underestimated tool – it will help you hack ubiquitous wireless protocols, proprietary standards, and smart home hubs alike.

Smart Ovens Are Doing Dumb Checks For Internet Connectivity

If you’ve ever worked in IT support, you’ll be familiar with users calling in to check if the Internet is up every few hours or so. Often a quick refresh of the browser is enough to see if a machine is actually online. Alternatively, a simple ping or browsing to a known-working website will tell you what you need to know. The one I use is koi.com, incidentally.

When it comes to engineers coding firmware for smart devices, you would assume they have more straightforward and rigorous ways of determining connectivity. In the case of certain smart ovens, it turns out they’re making the same dumb checks as everyone else.

Continue reading “Smart Ovens Are Doing Dumb Checks For Internet Connectivity”

This Week In Security: Symbiote, Smart Locks, And CosmicStrand

Symbiote is a particularly nasty Linux rootkit, and we have the interesting case of two separate analysis releasing this week. Up first is [CyberMasterV] taking apart a very early sample of the malware. The primary purpose of Symbiote seems to be capturing SSH logins, and this version does so by hooking the Pluggable Authentication Modules (PAM) system to capture users logging in to the machine it resides on. It also watches for SSH and SCP binaries, and sniffs the terminal used by those binaries, thereby capturing outgoing credentials.

All this data gets packaged up as DNS queries and shuffled off to the Command and Control server. “Easy”, I hear you say, “just block DNS traffic to everywhere except a trusted DNS provider.” It’s more clever than that. The data is in the form of valid DNS subdomains. In full, it’s a DNS request to PacketNumber.MachineID.Data.px32.nss.atendimento-estilo[.]com, all appropriately encoded to be valid. Every request will be for a unique host name, so every request gets forwarded to the C&C controller, which does double duty as the authoritative DNS resolver for that domain. You might get some mileage out of blocking (or at least logging) very long DNS queries.

Symbiote also replaces the typical files and devices you would look at to find a potential problem. For instance, /proc/net/tcp is where the kernel reports open TCP connections. On an infected machine, a copy of this file is maintained by the malware, conveniently leaving out the connections resulting from the infections. Symbiote has a hook in fopen, so whenever a process tries to read this location, the read is redirected to the cooked version, neatly hiding the rootkit. This stealth feature is apparently also used to hide other malware from the same attackers that may be on the same machine.
Continue reading “This Week In Security: Symbiote, Smart Locks, And CosmicStrand”

Kerry Scharfglass Secures Your IoT Things

We’ve all seen the IoT device security trainwrecks: those gadgets that fail so spectacularly that the comment section lights up with calls of “were they even thinking about the most basic security?” No, they probably weren’t. Are you?

Hackaday Contributor and all around good guy Kerry Scharfglass thinks about basic security for a living, and his talk is pitched at the newcomer to device security. (Embedded below.) Of course “security” isn’t a one-size-fits-all proposition; you need to think about what threats you’re worried about, which you can ignore, and defend against what matters. But if you’ve never worked through such an exercise, you’re in for a treat here. You need to think like a maker, think like a breaker, and surprisingly, think like an accountant in defining what constitutes acceptable risks. Continue reading “Kerry Scharfglass Secures Your IoT Things”

HTTPS For The Internet Of Things

Every day, we’re connecting more and more devices over the internet. No longer does a household have a single connected computer — there are smartphones, tablets, HVAC systems, deadbolts — you name it, it’s been connected. As the Internet of Things proliferates, it has become readily apparent that security is an issue in this space. [Andreas Spiess] has been working on this very problem, by bringing HTTPS to the ESP8266 and ESP32. 

Being the most popular platform for IOT devices, it makes sense to start with the ESP devices when improving security. In his video, [Andreas] starts at the beginning, covering the basics of SSL, before branching out into how to use these embedded systems with secure cloud services, and the memory requirements to do so. [Andreas] has made the code available on GitHub so it can be readily included in your own projects.

Obviously implementing increased security isn’t free; there’s a cost in terms of processing power, memory, and code complexity. However, such steps are crucial if IOT devices are to become trusted in wider society. A malfunctioning tweeting coffee pot is one thing, but being locked out of your house is another one entirely.

We’ve seen other takes on ESP8266 security before, too. Expect more to come as this field continues to expand.

[Thanks to Baldpower for the tip!]

Harmony Hub Hacked And Patched

When we say “hack” here we most often mean either modifying something to do something different or building something out of parts. But as we build more Internet-connected things, it is worthwhile to think about the other kind of hack where people gain unauthorized access to a system. For example, you wouldn’t think a remote control would be a big deal for hackers. But the Logitech Harmony Hub connects to the Internet and runs Linux. What’s more is it can control smart devices like door locks and thermostats, so hacking it could cause problems. FireEye’s Mandian Red Team set out to hack the Harmony and found it had a lot of huge security problems.

The remote didn’t check Logitech’s SSL certificate for validity. It didn’t have a secure update process. There were developer tools (an SSH server) left inactive in the production firmware and — surprisingly — the root password was blank! The team shared their findings with Logitech before publishing the report and the latest patch from the company fixes these problems. But it is instructive to think about how your Raspberry Pi project would fare under the same scrutiny.

In fact, that’s the most interesting part of the story is the blow-by-blow description of the attack. We won’t spoil the details, but the approach was to feed the device a fake update package that turned on a dormant ssh server. Although they started by trying to solder wires to a serial port, that wasn’t productive and the final attack didn’t require any of that.

We’ve looked at some ways to harden Linux systems like the Raspberry Pi before, but honestly, it is an ongoing battle. We’ve seen plenty of devices with cybersecurity holes in them — some not found by good guy hackers first.

Microsoft Secures IoT From The Microcontroller Up

Frustrated by the glut of unsecured IoT devices? So are Microsoft. And they’re using custom Linux and hardware to do something about it.

Microsoft have announced a new ecosystem for secure IoT devices called “Azure Sphere.” This system is threefold: Hardware, Software, and Cloud. The hardware component is a Microsoft-certified microcontroller which contains Microsoft Pluton, a hardware security subsystem. The first Microsoft-certified Azure Sphere chip will be the MediaTek MT3620, launching this year. The software layer is a custom Linux-based Operating System (OS) that is more capable than the average Real-Time OS (RTOS) common to low-powered IoT devices. Yes, that’s right. Microsoft is shipping a product with Linux built-in by default (as opposed to Windows Subsystem for Linux). Finally, the cloud layer is billed as a “turnkey” solution, which makes cloud-based functions such as updating, failure reporting, and authentication simpler.

Continue reading “Microsoft Secures IoT From The Microcontroller Up”