LoRa Tutorials For The DIY Masses

LoRa is the go-to tech for low power, long range wireless sensor networks. Designing with off-the-shelf modules can be a boon or a bane depending on the documentation and support. Luckily, [Renzo] has prepared a set of tutorials to get you started.
In his seven part series of write-ups, [Renzo] starts by connecting the E32 module from AliExpress to an Arduino as well as an ESP8266 to demonstrate essential communications. Then he discusses the configuration options and the library he created to make like a bit easier. Following that is a series of posts discussing transmission types as well as power saving methods including sleep modes and wake-on-radio.
The information will be extremely handy for someone starting off with the SX1276/SX1278 Wireless Modules which are relatively inexpensive as opposed to more standardized development kits. We love the abundance of fritzing diagrams, arduino code and helper library and hope someone will build on it. You can get the library from Github for your tinkering pleasure.
If you are looking for ideas for this newly discovered skill, have a look at LoRa Enabled Mailbox as well as Electric Fence Monitoring with The Things Network for a bit of IoT action.

AAA Powered LoRa Mailbox Sensor Goes The Distance

As more of the world’s communication moves into the electronic realm, a casualty has come in the physical mail. Where once each new day might have brought with it a bulging mailbox, today it’s not uncommon for days to pass with not even so much as a bill or a coupon book. For [Eivholt] this presents a problem: he doesn’t want to miss a parcel but most visits to the mailbox are futile. His solution is a LoRa-connected mailbox monitor that sips power from a pair of AAA batteries to the extent that so far it’s run for over two years on a single set.

At its heart is a single board, a Talk2 Whisper Node. This packs a low-power version of the ATmega328 microcontroller alongside a LoRa radio and an efficient power regulator allowing it to draw only 8.70 uA in standby mode, waking up only for extremely short periods to check for mail and report via LoRa to The Things Network. The sensor is simply a microswitch, selected after finding a reed switch problematic to install. Finally an SDR was used to debug the operation of the radio.

The write-up also provides an introduction to extreme low power projects, including some tips on measuring such tiny currents. Even if you have no interest in a mailbox, any tricks that can help maximize power efficiency are always worth taking a look at. Check out the video after the break to see this radio-equipped mailbox in action.

Continue reading “AAA Powered LoRa Mailbox Sensor Goes The Distance”

RF Modulation: Crash Course For Hackers

When you’re looking to add some wireless functionality to a project, there are no shortage of options. You really don’t need to know much of the technical details to make use of the more well-documented modules, especially if you just need to get something working quickly. On the other hand, maybe you’ve gotten to the point where you want to know how these things actually work, or maybe you’re curious about that cheap RF module on AliExpress. Especially in the frequency bands below 1 GHz, you might find yourself interfacing with a module at really low level, where you might be tuning modulation parameters. The following overview should give you enough of an understanding about the basics of RF modulation to select the appropriate hardware for your next project.

Three of the most common digital modulation schemes you’ll see in specifications are Frequency Shift Keying (FSK), Amplitude Shift Keying (ASK), and LoRa (Long Range). To wrap my mechanically inclined brain around some concepts, I found that thinking of RF modulation in terms of pitches produced by a musical instrument made it more intuitive.

And lots of pretty graphs don’t hurt either. Signals from two different RF dev boards were captured and turned into waterfall and FFT plots using a $20 RTL-SDR dongle. Although not needed for wireless experimentation, the RTL-SDR is an extremely handy debugging tool, even to just check if a module is actually transmitting. Continue reading “RF Modulation: Crash Course For Hackers”

Hackaday Links Column Banner

Hackaday Links: December 8, 2019

Now that November of 2019 has passed, it’s a shame that some of the predictions made in Blade Runner for this future haven’t yet come true. Oh sure, 109 million people living in Los Angeles would be fun and all, but until we get our flying cars, we’ll just have to console ourselves with the ability to “Enhance!” photographs. While the new service, AI Image Enlarger, can’t tease out three-dimensional information, the app is intended to sharpen enlargements of low-resolution images, improving the focus and bringing up details in the darker parts of the image. The marketing material claims that the app uses machine learning, and is looking for volunteers to upload high-resolution images to improve its training set.

We’ve been on a bit of a nano-satellite bender around here lately, with last week’s Hack Chat discussing simulators for CubeSats, and next week’s focusing on open-source thrusters for PocketQube satellites. So we appreciated the timing of a video announcing the launch of the first public LoRa relay satellite. The PocketCube-format satellite, dubbed FossaSat-1, went for a ride to space along with six other small payloads on a Rocket Lab Electron rocket launched from New Zealand. Andreas Spiess has a short video preview of the FossaSat-1 mission, which was designed to test the capabilities of a space-based IoT link that almost anyone can access with cheap and readily available parts; a ground station should only cost a couple of bucks, but you will need an amateur radio license to uplink.

We know GitHub has become the de facto standard for source control and has morphed into a collaboration and project management platform used by everybody who’s anybody in the hacking community. But have you ever wished for a collaboration platform that was a little more in tune with the needs of hardware designers? Then InventHub might be of interest to you. Currently in a limited beta – we tried to sign up for the early access program but seem to have been put on a waiting list – it seems like this will be a platform that brings versioning directly to the ECAD package of your choice. Through plugins to KiCad, Eagle, and all the major ECAD players you’ll be able to collaborate with other designers and see their changes marked up on the schematic — sort of a visual diff. It seems interesting, and we’ll be keeping an eye on developments.

Amazon is now offering a stripped-down version of their Echo smart speaker called Input, which teams up with speakers that you already own to satisfy all your privacy invasion needs on the super cheap — only $10. At that price, it’s hard to resist buying one just to pop it open, which is what Brian Dorey did with his. The teardown is pretty standard, and the innards are pretty much what you’d expect from a modern piece of surveillance apparatus, but the neat trick here involved the flash memory chip on the main board. Brian accidentally overheated it while trying to free up the metal shield over it, and the BGA chip came loose. So naturally, he looked up the pinout and soldered it to a micro-SD card adapter with fine magnet wire. He was able to slip it into a USB SD card reader and see the whole file system for the Input. It was a nice hack, and a good teardown.

Zombies Ate Your Neighbors? Tell Everyone Through LoRa!

As popular as the post-apocalyptic Zombie genre is, there is a quite unrealistic component to most of the stories. Well, apart from the whole “the undead roaming the Earth” thing. But where are the nerds, and where is all the apocalypse-proof, solar-powered tech? Or is it exactly this lack of tech in those stories that serves as incentive to build it in the first place? Well, maybe it doesn’t have to be the end of the world to seek for ways to cope with a collapse of our modern communication infrastructure either. Just think of natural disasters — an earthquake or hurricane causing a long-term power outage for example. The folks at [sudomesh] tackle exactly this concern with their fully open source, off-grid, solar-powered, LoRa mesh network, Disaster Radio.

The network itself is built from single nodes comprising of a battery-backed solar panel, a LoRa module, and either the ESP8266 or ESP32 for WiFi connectivity. The idea is to connect to the network with your mobile phone through WiFi, therefore eliminating any need for additional components to actually use the network, and have the nodes communicate with each other via LoRa. Admittedly, LoRa may not be your best choice for high data rates, but it is a good choice for long-range communication when cellular networks aren’t an option. And while you can built it all by yourself with everything available on [sudomesh]’s GitHub page, a TTGO ESP32 LoRa module will do as well.

If the idea itself sounds familiar, we did indeed cover similar projects like HELPER and Skrypt earlier this year, showing that LoRa really seems to be a popular go-to for off-grid communication. But well, whether we really care about modern communication and helping each other out when all hell breaks loose instead of just primevally defending our own lives is of course another question.

Bee Minder Proves Not Even Bees Are Safe From Surveillance States

We all know how important bees are to our ecosystems and [Kris Winer]’s bee monitor provides a great way to monitor these amazing but delicate creature’s habitats, hopefully alerting us before a disaster strikes a vital hive.

The board is based around LoRa sensor tile called Cicada but redesigned to make it smaller and cheaper. LoRa is a popular low-power wide-area network running on sub-Ghz bands designed exactly for applications like this. This board has a nice suite of sensors. It can detect UVA, UVB, and the visible spectrum of light. It can also observe the temperature, pressure, and humidity. Importantly for bees, the accelerometer can detect the various vibrations of the hive as well as disaster events like vandalism.

The data is all logged into a Cayenne dashboard which the prospective farmer could view and analyze from anywhere. [Kris] mentions that the board is relatively easy to re-spin with a different sensor suite depending on the application. Technology like this can go along way towards a more sustainable future.

Modular Camera Remote Is Highly Capable

Many cameras these days have optional remotes that allow the shutter release to be triggered wirelessly. Despite this, [Foaly] desired more range, and more options for dealing with several cameras at once. As you’d expect, hacking ensued.

[Foaly] uses Silver modules to photograph rocket launches safely.
The system goes by the name of Silver, and is modular in nature. Each Silver module packs a transmitter and receiver, and can send and receive trigger orders to any other module in range. This allows a module to be used to trigger a camera, or be used as a remote to control other modules. There’s even a PC interface program that controls modules over USB.

Modules are also capable of sharing configuration changes with other modules in the field, making it easy to control a large battery of cameras without having to manually run around changing settings on each one. Oh, and it can run as a basic intervalometer too.

LoRa is used for wireless communications between modules, giving them excellent range. [Foaly] successfully used the remotes at ranges over 500 meters without any dropouts, capturing some great model rocket takeoffs in the process.

Silver is a highly robust project that should do everything the average photographer could ever possibly need, and probably a good deal more. Firmware and board files are available for those eager to make their own.

We’ve seen several very impressive camera augmentations entered into the 2019 Hackaday Prize, from ultra high-speed LED flash modules to highly flexible automatic trigger systems.