Reverse-Engineering Makita Batteries To Revive Them

Modern lithium-ion battery packs for cordless power tools contain an incredible amount of energy, which necessitates that they come with a range of safeties. Although it’s good when the battery management system (BMS) detects a fault and cuts power to prevent issues, there exist the possibility of false positives. Having an expensive battery pack brick itself for no good reason is rather annoying, as is being unable to reuse a BMS in for example a re-manufactured battery. This was the reasoning that led [Martin Jansson] down the path of reverse-engineering Makita batteries for starters.

After that initial reverse-engineering attempt involving a firmware dump of the NEC (Renesas) F0513 MCU, [Martin] didn’t get back to the project until recently, when he was contacted by [Romain] who donated a few BMS boards to the cause. One of these features an STM32 MCU, which made the task much easier. Ultimately [Martin] was able to determine the command set for the Maxim OneWire-based communication protocol, as was a hidden UART mode.

Due to the critical timing required, off-the-shelf programmers didn’t work, so an Arduino Uno-based programmer (ArduinoOBI) was created instead, which can be found on GitHub along with the Open Battery Information desktop application which provides access to these BMS features after connecting to the battery pack. Although only Makita is supported right now, [Martin] would like to see support for other brands being added as well.

Power Tool Packs Make A Portable Powerhouse

The revolution in portable and cordless appliances has meant that we now own far fewer mains-powered gadgets than we might once have done, but it hasn’t entirely banished the old AC outlet from our lives. Particularly when away from a mains supply it can be especially annoying, but now instead of a generator there’s the option of an inverter. [Thijs Koppen] has made a very neat all-in-one mains power station in a plastic flight case using the ubiquitous and handy standardized Makita power tool packs.

From one perspective this is a simple enough build, because wiring a battery to an inverter isn’t the most difficult of tasks. But he’s designed his own 3D printed Makita battery receptacles which should be of interest to plenty of readers, and with three packs in series he’s sourced an unusual 72 volt inverter to supply mains. The photo of him charging a Tesla with the result is probably more for show than practicality though.

We’ve featured quite a lot of cordless tool battery hacks over the years as their ready availability and quick interchangeability is attractive. If you ever fancy engineering your own mounting, we’ve taken a look at someone doing just that.

Change The Jingle In Your Makita Charger Because You Can

Lots of things beep these days. Washing machines, microwaves, fridge — even drill battery chargers. If you’re on Team Makita, it turns out you can actually change the melody of your charger’s beep, thanks to a project from [Real-Time-Kodi].

The hack is for the Makita DR18RC charger, and the implementation of the hack is kind of amusing. [Real-Time-Kodi] starts by cutting the trace to the buzzer inside the charger. Then, an Arduino is installed inside the charger, hooked up to the buzzer itself and the original line that was controlling it. When it detects the charger trying to activate the buzzer, it uses this as a trigger to play its own melody on the charger instead. The Arduino also monitors the LEDs on the charger in order to determine the current charge state, and play the appropriate jingle for the situation.

It’s an amusing hack, and one that could certainly confuse the heck out of anyone expecting the regular tones out of their Makita charger. It also shows that the simple ways work, too — there was no need to dump any firmware or decompile any code.

Continue reading “Change The Jingle In Your Makita Charger Because You Can”

What’s In A Name For A Tool Battery Pack?

Power tools have come a long way. It used to be you needed extension cords or a generator for your tools, but now you can get just about anything with a nice rechargeable battery pack. As it turns out, most of those packs are made by the same company, and [syonyk] wanted to see how similar two different Makita packs and a Rayovac pack were. What he found was surprising. The outsides were very similar, but what was on the inside?

The Rayovac pack was easy to open and had a controller, a thermal cutoff device, and two layers of 18650 batteries. The similar Makita pack looked identical from the outside until he tried to take it apart. The maker had plugged one screw hole and used security screws instead of the Phillips heads like on the Rayovac.

Continue reading “What’s In A Name For A Tool Battery Pack?”

Pros And Cons Of Replacing Tool Batteries With Lithium Polymer

[HammyDude] was tired of buying replacement batteries for his power tools. He had some Lithium Polymer batteries on hand and decided to take one of his dead drills and swap out the dead power pack.

The orange battery pack you see above has a deans connector on it for use with RC vehicles. By opening up the drill housing, [HammyDude] was able to add the mating deans connector. Now the replacement easily plugs into the drill, and it even fits inside the handle body.

This battery is made up of several cells, and an inexpensive charger is capable of topping off each individually for a balanced charge. In the video after the break [HammyDude] points out that the Makita charger applies voltage to all of the cells in series. It’s incapable of balance charging so when one cell dies the battery is toast. We’ve encountered this problem with Makita tools before.

One drawback to take note of in the end of the video: this replacement doesn’t have any low voltage cut-off. Running this battery pack down too low will permanently damage it. There must be a simple circuit that could be added as a safety measure. If you know of one, drop us a tip.

Continue reading “Pros And Cons Of Replacing Tool Batteries With Lithium Polymer”

Makita Jobsite Radio Gets A Few Extra Bells And Whistles

[Jose] added several features to a Makita AM/FM jobsite radio, and did such a good job that you can’t tell they weren’t originally part of the design. The original radio has a compartment for a battery pack used with Makita’s line of rechargeable tools, and offers AM/FM radio, as well as auxiliary audio playback via a pair of speakers. [Jose] augmented those speakers by adding a pair of tweeters as well.

Next on his list of features were a couple of power bus add-ons. In the image on the right you can see the results of adding an automotive cigarette lighter to the side of the unit. Opposite this you’ll find a pair of USB ports that are activated by a lighted toggle switch. The ports are part of a USB car charger that is patched into the battery with a flip of that switch.

Finally, there’s a built-in Bluetooth audio receiver that connects to the auxiliary input. As shown in the image on the left, he can now play tunes from his cellphone without the need for a cord. See him showing off the device in the video after the break.

Continue reading “Makita Jobsite Radio Gets A Few Extra Bells And Whistles”

Automated Window Curtain Hits The Road

[Niklas Roy] upgraded his privacy curtain and is taking it on the road. Regular readers will remember the first version that resided in his shop window and used video processing in conjunction with a motor to keep the small bit of curtain in front of any passersby. We’ve embedded the original demo video after the break and it’s not to be missed.

But now he’s decided to make some upgrades to the system because it’s going to be shown as an art display. He looked around for a motor upgrade but found that the best motor at the most reasonable price could be pulled from a Makita power drill. The track itself is modular, making the installation scalable up to ten meters in total length. He even built a clean-looking laptop dock that handles the video processing end of things. But there’s something here for you as well. He’s released all of his source code, schematics, board design, and even the SketchUp files for the motor mounts and other parts. Dig out that old power drill and build one of your own.

Continue reading “Automated Window Curtain Hits The Road”