Make Physics Fun With A Trebuchet

What goes up must come down. And what goes way, way up can come down way, way too fast to survive the sudden stop. That’s why [Tom Stanton] built an altitude recording projectile into an oversized golf ball with parachute-controlled descent. Oh, and there’s a trebuchet too.

That’s a lot to unpack, but suffice it to say, all this stems from [Tom]’s obvious appreciation for physics. Where most of us would be satisfied with tossing a ball into the air and estimating the height to solve the classic kinematic equations from Physics 101, [Tom] decided that more extreme means were needed.

Having a compound trebuchet close at hand, a few simple mods were all it took to launch projectiles more or less straight up. The first payload was to be rocket-shaped, but that proved difficult to launch. So [Tom] 3D-printed an upsized golf ball and packed it with electronics to record the details of its brief ballistic flight. Aside from an altimeter, there’s a small servo controlled by an Arduino and an accelerometer. The servo retracts a pin holding the two halves of the ball together, allowing a parachute to deploy and return the package safely to Earth. The video below shows some pretty exciting launches, the best of which reached over 60 meters high.

The skies in the field behind [Tom]’s house are an exciting place. Between flying supercapacitors, reaction wheel drones, and low-altitude ISS flybys, there’s always something going on up there.

Continue reading “Make Physics Fun With A Trebuchet”

The Amazing New World Of Gallium Nitride

From the heart of Silicon Valley comes a new buzzword. Gallium nitride is the future of power technology. Tech blogs are touting gallium nitride as the silicon of the future, and you are savvy enough to get in on the ground floor. Knowing how important gallium nitride is makes you a smarter, better consumer. You are at the forefront of your peer group because you know of an up and coming technology, and this one goes by the name of gallium nitride.

OK, gallium nitride is more than just a buzzword. It is, indeed, important materials science. Gallium nitride is a semiconductor that allows for smaller electronics, more powerful electric cars, better solar cells, and is the foundation of all LED lighting solutions today. Time will tell, but it may well mark a revolution in semiconductors. Here’s what you need to know about it now.

Continue reading “The Amazing New World Of Gallium Nitride”

Noise: It Turns Out You Need It

We don’t know whether quantum physics proves the universe is truly a strange place or that we are living in a virtual reality simulation, but we know it turns a lot of common sense into garbage. Take noise, for example. Noise — as in random electrical noise — is bad, right? We spend a lot of time designing to minimize noise. Researchers in Austria, Germany, and Australia recently published a paper that shows that noise can actually improve the flow of energy. While the paper is behind a paywall, the Focus article is available and, of course, you can probably find a copy of the paper if you want to read the entire thing.

The paper, titled “Environment-Assisted Quantum Transport in a 10-qubit Network” uses trapped calcium atoms to study an effect suspected of being a key factor in high-efficiency energy transfer such as the transfer observed in optical fibers and photosynthesis.

Continue reading “Noise: It Turns Out You Need It”

The Future Circular Collider: Can It Unlock Mysteries Of The Universe?

In the early 1990s, I was lucky enough to get some time on a 60 MeV linear accelerator as part of an undergraduate lab course. Having had this experience, I can feel for the scientists at CERN who have had to make do with their current 13 TeV accelerator, which only manages energies some 200,000 times larger. So, I read with great interest when they announced the publication of the initial design concept for the Future Circular Collider (FCC), which promises collisions nearly an order of magnitude more energetic. The plan, which has been in the  works since 2014, includes three proposals for accelerators which would succeed CERN’s current big iron, the LHC.

Want to know what’s on the horizon in high-energy physics?

Continue reading “The Future Circular Collider: Can It Unlock Mysteries Of The Universe?”

Sidney Darlington

In a field where components and systems are often known by sterile strings of characters that manufacturers assign or by cutesy names that are clearly products of the marketing department and their focus groups, having your name attached to an innovation is rare. Rarer still is the case where the mere mention of an otherwise obscure inventor’s name brings up a complete schematic in the listener’s mind.

Given how rarely such an honor is bestowed, we’d be forgiven to think that Sidney Darlington’s only contribution to electronics is the paired transistor he invented in the 1950s that bears his name to this day. His long career yielded so much more, from network synthesis theory to rocket guidance systems that would eventually take us to the Moon. The irony is that the Darlington pair that made his name known to generations of engineers and hobbyists was almost an afterthought, developed after a weekend of tinkering.

Continue reading “Sidney Darlington”

Creating Antimatter On The Desktop — One Day

If you watch Star Trek, you will know one way to get rid of pesky aliens is to vent antimatter. The truth is, antimatter is a little less exotic than it appears on TV, but for a variety of reasons there hasn’t been nearly as much practical research done with it. There are well over 200 electron accelerators in labs around the world, but only a handful that work with positrons, the electron’s anti-counterpart. [Dr. Aakash Sahai] would like to change that. He’s got a new design that could bring antimatter beams out of the lab and onto the desktop. He hasn’t built a prototype, but he did publish some proof-of-concept simulation work in Physical Review Accelerators and Beams.

Today, generating high-energy positron beams requires an RF accelerator — miles of track with powerful electromagnets, klystrons, and microwave cavities. Not something you are going to build in your garage this year. [Sahai] is borrowing ideas from electron laser-plasma accelerators (ELPA) — a technology that has allowed electron accelerators to shrink to mere inches — and turned it around to create positrons instead.

Continue reading “Creating Antimatter On The Desktop — One Day”

Trebucheting Tennis Balls At 124 MPH

A trebuchet is one of the older machines of war. It’s basically a sling on a frame, with a weight that you can lift up high and which pulls the sling arm over on release. Making one opens up the doors to backyard mayhem, but optimizing one opens up the wonders of physics.

[Tom Stanton] covers just about everything you need to know about trebuchet building in his four-part video series. Indeed, he sums it up in video two: you’ve got some potential energy in the weight, and you want to transfer as much of that as possible to the ball. This implies that the optimal path for the weight would be straight down, but then there’s the axle in the way.  The rest, as they say, is mechanical engineering.

Video three was the most interesting for us. [Tom] already had some strange arm design that intends to get the weight partially around the axle, but he’s still getting low efficiencies, so he builds a trebuchet on wheels — the classic solution. Along the way, he takes a ton of measurements with Physlets Tracker, which does video analysis to extract physical measurements. That tip alone is worth the price of admission, but when the ball tops out at 124 mph, you gotta cheer.

In video four, [Tom] plays around with the weight of the projectile and discovers that he’s putting spin on his tennis ball, making it curve in flight. Who knew?

Anyway, all four videos are embedded below. You can probably skip video one if you already know what a trebuchet is, or aren’t interested in [Tom] learning that paying extra money for a good CNC mill bit is worth it. Video two and three are must-watch trebucheting.

We’re a sad to report that we couldn’t find any good trebuchet links on Hackaday to dish up. You’re going to have to settle for a decade-old catapult post or this sweet beer-pong-playing robotic arm. You can help. Submit your trebuchet tips.

Thanks [DC] for this one!

Continue reading “Trebucheting Tennis Balls At 124 MPH”