Piano Doorbell Adds Music To Your Home

Regular ding-dong doorbells are fun and all, but it can be nice to put something a little more special by your front door. To that end, [Arpan Mondal] built this neat little piano doorbell to make visiting his home just a touch more fun.

The heart of the build is an ESP32 microcontroller. It’s responsible for reading the state of five 3D printed piano keys: three white, two black. It’s nowhere near a full octave, but for a doorbell, it’s enough. When a key is pressed, the ESP32 plays a short audio sample embedded within the program code itself. This is done with the help of a PAM8403 audio amplifier module, which jacks up the output to drive the doorbell speaker loud enough to be heard throughout the home. It’s not exactly studio quality audio, but for a doorbell, it sounds pretty solid.

If you’re looking for a fun and easy build to make your home just a little bit more whimsical, it’s hard to beat something like this. Your musical friends will love it—they might even develop an intro riff of their very own. We’ve featured some other fun doorbell builds before, too—the best of which are the Halloween projects.
Continue reading “Piano Doorbell Adds Music To Your Home”

Piano Gets An Arduino Implant

[Paul] likes his piano, but he doesn’t know how to play it. The obvious answer: program an Arduino to do it. Some aluminum extrusion and solenoids later, and it was working. Well, perhaps not quite that easy — making music on a piano is more than just pushing the keys. You have to push multiple keys together and control the power behind each strike to make the music sound natural.

The project is massive since he chose to put solenoids over each key. Honestly, we might have been tempted to model ten fingers and move the solenoids around in two groups of five. True, the way it is, it can play things that would not be humanly possible, but ten solenoids, ten drivers, and two motors might have been a little easier and cheaper.

The results, however, speak for themselves. He did have one problem with the first play, though. The solenoids have a noticeable click when they actuate. The answer turned out to be orthodontic rubber bands installed on the solenoids. We aren’t sure we would have thought of that.

Player pianos, of course, are nothing new. And, yes, you can even make one with a 555. If a piano isn’t your thing, maybe try a xylophone instead.

Continue reading “Piano Gets An Arduino Implant”

2024 Home Sweet Home Automation: A Piano-Controlled Smart Home

There’s a scene in Willy Wonka and the Chocolate Factory where a little flap in the wall flips down to reveal a small organ embedded there. Gene Wilder plays a bit of Rachmaninoff on the organ, and the giant door to the chocolate room slowly creaks open.

Once [Nathan Orick] got this into his head, he couldn’t get it out, and had to give it a go in his own home. Regrettably there’s no chocolate rooms in the house, so he’s using various chords and melodies to do things like control the lights and the TV, as you’ll see in the video after the break. Although this one may have started as a joke of a home automation scheme, [Nathan] thinks it turned out pretty solid, and so do we.

He already had the piano and a Raspberry Pi Zero lying around, so getting this up and running was mostly about connections and code. Speaking of connections, [Nathan] was hard-pressed to find a micro-USB to USB-B cord, so he ended up splicing one together. Simple enough. The harder part was getting Linux to recognize the keyboard, but all it took was touching all the pins with a multimeter, evidently. What’s a project without a little magic?

And not only did it show up, Linux went to the trouble of registering it as a MIDI device all on its own. Once [Nathan] obtained the port number, he had data printing to the console every time he played a note. Then it was mostly a matter of writing code to interact with MIDI data and track the notes as they’re played, and put it all together with Home Assistant. Be sure to check out the brief demo after the break.

Continue reading “2024 Home Sweet Home Automation: A Piano-Controlled Smart Home”

This Piano Does Not Exist

A couple of decades ago one of *the* smartphone accessories to have was a Bluetooth keyboard which projected the keymap onto a table surface where letters could be typed in a virtual space. If we’re honest, we remember them as not being very good. But that hasn’t stopped the idea from resurfacing from time to time.

We’re reminded of it by [Mayuresh1611]’s paper piano, in which a virtual piano keyboard is watched over by a webcam to detect the player’s fingers such that the correct note from a range of MP3 files is delivered.

The README is frustratingly light on details other than setup, but a dive into the requirements reveals OpenCV as expected, and TensorFlow. It seems there’s a training step before a would-be virtual virtuoso can tinkle on the non-existent ivories, but the demo shows that there’s something playable in there. We like the idea, and wonder whether it could also be applied to other instruments such as percussion. A table as a drum kit would surely be just as much fun.

This certainly isn’t the first touch piano we’ve featured, but we think it may be the only one using OpenCV. A previous one used more conventional capacitive sensors.

The Trans-Harmonium Is A Strange Kind Of Radio-Musical Instrument

Pianos use little hammers striking taut strings to make tones. The Mellotron used lots of individual tape mechanisms. Meanwhile, the Trans-Harmonium from [Emily Francisco] uses an altogether more curious method of generating sound — each key on this keyboard instrument turns on a functional clock radio.

Electrically, there’s not a whole lot going on. The clock radios have their speaker lines cut, which are then rejoined by pressing their relevant key on the keyboard. As per [Emily]’s instructions for displaying the piece, it’s intended that the radio corresponding to C be tuned in to a local classical station. Keys A, B, D, E, F, and G are then to be tuned to other local stations, while the sharps and flats are to be tuned to the spaces in between, providing a dodgy mix of static and almost-there music and conversation.

It’s an interesting art piece that, no matter how well you play it, will probably not net you a Grammy Award. That would be missing the point, though, as it’s more a piece about “Collecting Fragments of Time,” a broader art project of which this piece is a part.

We do love a good art piece, especially those that repurpose old hardware to great aesthetic achievement.

Continue reading “The Trans-Harmonium Is A Strange Kind Of Radio-Musical Instrument”

Robot Pianist Runs On Arduino Nano

The piano has been around for a long time now. Not long after its invention, humans started contemplating how they could avoid playing it by getting a machine to do the job instead. [vicenzobit] is the latest to take on this task, building a “Robot Pianista” that uses a simple mechanism to play a tune under electronic command (Spanish language, Google Translate link).

An Arduino Nano is the heart of the build, paired with a shield that lets it run a number of servo motors. The servos, one per key, are each assembled into a 3D-printed bracket with a cam-driven rod assembly. When the servo turns, the cam turns, and pushes down a rod that presses the piano key.

The build is limited in the sense that you can only play as many keys as you have servo channels, but nonetheless, it does the job. With eight servos, it’s able to play a decent rendition of Ode to Joy at a steady tempo, and that’s an excellent start.

We’ve featured some great mechanized instruments before, too. Video after the break.

Continue reading “Robot Pianist Runs On Arduino Nano”

RoboPianist Is A Simulation For Advancing Robotic Control

Researchers at Google have posed themselves an interesting problem to solve: mastering the piano. However, they’re not trying to teach themselves, but a pair of simulated anthropomorphic robotic hands instead. Enter RoboPianist.

The hope is that the RoboPianist platform can help benchmark “high-dimensional control, targeted at testing high spatial and temporal precision, coordination, and planning, all with an underactuated system frequently making-and-breaking contacts.”

If that all sounds like a bit much to follow, the basic gist is that playing the piano takes a ton of coordination and control. Doing it in a musical way requires both high speed and perfect timing, further upping the challenge. The team hopes that by developing control strategies that can master the piano, they will more broadly learn about techniques useful for two-handed, multi-fingered control. To that end, RoboPianist models a pair of robot hands with 22 actuators each, or 44 in total. Much like human hands, the robot hands are underactuated by design, meaning they have less actuators than their total degrees of freedom.

Continue reading “RoboPianist Is A Simulation For Advancing Robotic Control”