Contagious Ideas

We ran a story about a wall-mounted plotter bot this week, Mural. It’s a simple, but very well implemented, take on a theme that we’ve seen over and over again in various forms. Two lines, or in this case timing belts, hang the bot on a wall, and two motors drive it around. Maybe a servo pulls the pen in and out, but that’s about it. The rest is motor driving and code.

We were thinking about the first such bot we’ve ever seen, and couldn’t come up with anything earlier than Hektor, a spray-painting version of this idea by [Juerg Lehni]. And since then, it’s reappeared in numerous variations.

Some implementations mount the motors on the wall, some on the bot. There are various geometries and refinements to try to make the system behave more like a simple Cartesian one, but in the end, you always have to deal with a little bit of geometry, or just relish the not-quite-straight lines. (We have yet to see an implementation that maps out the nonlinearities using a webcam, for instance, but that would be cool.) If you’re feeling particularly reductionist, you can even do away with the pen-lifter entirely and simply draw everything as a connected line, Etch-a-Sketch style. Maslow CNC swaps out the pen for a router, and cuts wood.

What I love about this family of wall-plotter bots is that none of them are identical, but they all clearly share the same fundamental idea. You certainly wouldn’t call any one of them a “copy” of another, but they’re all related, like riffing off of the same piece of music, or painting the same haystack in different lighting conditions: robot jazz, or a study in various mechanical implementations of the same core concept. The collection of all wall bots is more than the sum of its parts, and you can learn something from each one. Have you made yours yet?

(Fantastic plotter-bot art by [Sarah Petkus] from her write-up ten years ago!)

Mural: The Plotter That Draws On Walls

Let’s say you’ve got a big bare wall in your home, and you want some art  on it. You could hang a poster or a framed artwork, or you could learn to paint a mural yourself. Or, like [Nik Ivanov], you could build a plotter called Mural, and get it to draw something on the wall for you. 

The build is straightforward enough. It uses a moving carriage suspended from toothed belts attached to two points up high on the wall. Stepper motors built into the carriage reel the belts in and out to move it up and down the wall, and from side to side. In this case, [Nik] selected a pair of NEMA 17 steppers to do the job. They’re commanded by a NodeMCU ESP32, paired with TMC2209 stepper motor drivers. The carriage also includes a pen lifter, which relies on a MG90s servo to lift the drawing implement away from the wall.

The build is quite capable, able to recreate SVG vector graphics quite accurately, without obvious skew or distortion. [Nik] has been using the plotter with washable Crayola markers, so he can print on the wall time and again without leaving permanent marks. It’s a great way to decorate—over and over again—on a budget. Total estimated cost is under $100, according to [Nik].

We’ve featured some neat projects along these lines before, too. Video after the break.

Continue reading “Mural: The Plotter That Draws On Walls”

Automating The Process Of Drawing With Chalk

Chalk is fun to draw with, and some people even get really good at using it to make art on the sidewalk. If you don’t like tediously developing such skills, though, you could go another route. [MrDadVs] built a robot to scrawl chalk pictures for him, and the results speak for themselves.

The robot is known as AP for reasons you’ll have to watch the video to understand. You might be imagining a little rover that crawls around on wheels dotting at the pavement with a stick of chalk, but the actual design is quite different. Instead, [MrDadVs] effectively built a polar-coordinate plotter to make chalk pictures on the ground. AP has a arm loaded with a custom liquid chalk delivery system for marking the pavement. It’s rotated by a stepper motor with the aid of a 3D-printed geartrain that helps give it enough torque. It’s controlled by an ESP32 running the FluidNC software which is a flexible open-source CNC firmware. [MrDadVs] does a great job of explaining how everything works together, from converting cartesian coordinates into a polar format, to getting the machine to work wirelessly.

Building a capable sidewalk chalk robot seems like a great way to spend six months. Particularly when it can draw this well. Video after the break.

Continue reading “Automating The Process Of Drawing With Chalk”

Simple Pen Plotter Rolls On The Table

Pen plotters are popular builds amongst DIY CNC enthusiasts. They’re a great way to learn the fundamentals of motion control and make something useful along the way. In that vein, [Maker101] has created a neat barebones plotter for tabletop use. 

The basic design relies on familiar components. It uses a pair of MGN15 linear rails as the basis of the motion platform, along with NEMA 17 stepper motors to run the X and Y axes. These are assembled with the aid of 3D-printed parts that bring the whole frame together, along with a pen lifter operated with a hobby servo.

The neat thing about the design is that the barebones machine is designed to sit upon an existing tabletop. This eliminates the need to integrate a large flat work surface into the plotter itself. Instead, the X axis just runs along whatever surface you place it on, rolling on a small wheel. It’s likely not ideal for accuracy or performance; we could see the machine itself skating around if run too fast. For a lightweight barebones plotter, though, it works well enough.

If you dig building plotters, you might like to step up to something more laser-y in future. Video after the break.

Continue reading “Simple Pen Plotter Rolls On The Table”

New Pens For Old Plotters

Finding consumables is an ever-present problem facing anyone working with old computer hardware. Many of these devices ceased manufacture decades ago and what old stock remains is invariably degraded by time. [Retrohax] has encountered it with the pens for an Atari plotter, a machine that uses an ALPS mechanism that appears in more than one 1980s machine. The original pens had dried out beyond the ability to refill, so he takes us through the process of finding replacements.

Sadly there are no equivalent modern pens ripe for modification, so whatever replacement he used would have to involve a little lateral thinking. He thought salvation was at hand in the form of multicolor ballpoint refills of the type where the ink is in an easily cuttable plastic tube. [Retrohax] and was able to make a 3D-printed holder for a cut-down ballpoint refill. Sadly the pressure required for a good line from a ballpoint was much higher than the original pens, so he was back to square one. Then he happened upon gel pens and tried the same trick with a gel pen refill. This gave instant success and should provide a valid technique for more than just this ALPS mechanism.

If you haven’t got a classic plotter to hand, never fear. You can have a go at making your own.

A Compact SCARA Arm Plotter

If you’re unfamiliar with SCARA robots, the acronym stands for Selective Compliance Assembly Robot Arm. This refers to the fact that the arms are rigid in the Z axis but somewhat compliant in the X and Y axes, and that they’re often used for assembly tasks. In any case, you can spend a great deal of money equipping your factory with these robots, or you can build your own for the fun of it. If you’re not endowed with a seven-figure investment for opening a production plant, consider exploring [tuenhidiy’s] project instead.

The build enlists an Arduino Mega as the brains of the operation. It’s paired with a RAMPS controller for running a pair of NEMA 17 stepper motors that actually move the arm in the X-Y plane. Additionally, a tray eject mechanism from a CD/DVD drive is enlisted to act as the Z axis. The frame is assembled from PVC plumbing components and a small amount of aluminium T-slot profile.

The resulting arm isn’t fast in the video we see of the build, but it works as a basic plotter without too much complaint. The benefit of the Z-axis in this case is obvious, as it allows the pen to be lifted off the page where necessary.

We’ve seen plenty of good plotter designs around these parts before, too. Video after the break.

Continue reading “A Compact SCARA Arm Plotter”

2D Plotter attachment for 3D printer.

Ender 3 Plotter Attachment For Printing Onto Cassettes

One way to look at FDM 3D printers is as machines that turn filament into three-dimensional objects, but at their core they are much more versatile than that. Since they can move just about any tool around in 3D space, you can also use them for plotter tasks, a fact that [Geoffrey Gao] made use of when he had to write labels for a stack of music tapes. The resulting FS-Plotter project is based around a Creality Ender 3 FDM printer. Standard g-code from PrusaSlicer is used to move a pen around, after the latter has been fitted into a (3D-printed) spring-loaded fixture.

The cassette tape is fitted into its own fixture that is attached to the printer bed to hold it in place, while the writing utensil can move in its spring-loaded fixture to account for some unevenness on the surface it’s writing on. In the linked GitHub project a PrusaSlicer profile is provided that can generate 2D plotter Gcode. Where [Geoffrey] says that this project is very useful to him as a musician is that it enables him to make small runs of tapes with professional printing, without running into extra expenses.

Beyond putting a writing utensil into the holder, it could also be used for light engraving and similar tasks, while still making it possible to switch between the FDM hotend and this plotter attachment as needed. For about $30 in parts, it doesn’t seem like a bad deal to get a small-ish plotter and maybe give that old Ender 3 a second life.