Cheap, Dirty And Perfect V-Groove Foam Cutter

If the only tool you have is a hammer, everything looks like a nail. Conversely, if you have the right tool for every job, it makes the difference between pro and amateur. [ftregan] needs to cut perfect V-grooves in foam for many of his projects, especially building RC planes. He wasn’t too satisfied with the results using his Xacto knife. And a proper tool was going to set him back by almost $25, but following that example he built his own version of the tool for much less.

Two pieces of wood cut at a 45 degree angle are held between two flat support pieces. A pair of regular shaving blades form the cutting elements. While it looks simple, it’s important to get the angles and blade directions correct. A central wooden wedge holds the two blades in place. He also added a small guide marker that let’s you cut precise straight grooves. [ftregan] built the tool to allow cutting 6mm thick foam but given that it’s so quick and cheap to build, we guess it’s easy to make a few of these to allow cutting different thicknesses of foam. We’re sure that many of you will find different or better ways of doing this, but considering [ftregan] spent just 15 minutes cooking this up, it’s not too bad, especially since the results are mighty good.

Another method of cutting foam is with hot wire. Check out this DIY Foam Cutter that we featured earlier.

R/C Plane Flies With A Cockpit View

That’s not a jet jockey making a low altitude turn up there. In fact, the pilot has his feet planted firmly on the ground. [Reliku] has built a radio controlled BAE Hawk which is flown via First Person View (FPV). FPV models often have a small camera mounted on the exterior of the craft. This camera gives a great field of view, but it isn’t exactly how full scale planes are flown.

[Reliku] took it to the next level by creating a scale cockpit for his plane. The cockpit is accurate to the real BAE Hawk T2, and features back lit simulated screens. Even the pilot got the FPV treatment. Micro servos move the pilot’s right hand in response to aileron and elevator inputs from the radio control system. The pilot’s head has been replaced with the FPV camera, which is mounted on a pan tilt unit. Pan and tilt are controlled by a head tracking system attached to [Reliku’s] video goggles. The entire experience is very immersive.

All this is built into a Hobbyking BAE Hawk Electric Ducted Fan (EDF) model, so space is at a premium. Even with the Hawk’s relatively large cockpit, [Reliku] found he was tight on space. While attempting to keep the cockpit scale from the pilot’s view, he found he was barely able to fit a single seat cockpit into a space designed for two! Adding all these modifications to a plane and still keeping the model flyable was not easy, as displayed by [Reliku’s] earlier attempt with an F-16.

The ends do justify the means though, as the final model looks great. We’d love to see those static cockpit displays replaced with small LCD or OLED panels for an even more realistic experience!

Continue reading “R/C Plane Flies With A Cockpit View”

Students Build A 3D Printed Plane

3d printed plane

A student team has successfully designed, built, and flown a 3D printed RC plane using only $16 of plastic with a consumer-grade 3D printer (Makerbot), plus the necessary electronics and motor.

The folks over at the Wright Brothers Institute (WBI) have a great program called the AFRL Discovery Lab which brings teams of students, businesses, researchers, and government together to work on a specific challenge or opportunity.

One of the programs this year was the Disposable Miniature Air Vehicle, or DMAV for short. The student interns [Nathan, Ben, and Brian] spent the first 5 weeks at Tec^Edge designing the plane. The team went through 5 revisions before they settled on a design they believed could fly. The final plane weighed 1.5 pounds, and on its first flight… plummeted into the ground. Good thing they printed a second copy! After some more practice [Stephen] got the hang of it and was able to fly and land the plane successfully.

According to the WBI, this is the first functional aircraft that has been fully 3D printed (sans electronics) using FDM technology, and the first low wing 3D printed plane to be flown. Hate to burst their bubble, but 3D printed quadcopters have been around for quite a while!

Test flight video is after the break.

Continue reading “Students Build A 3D Printed Plane”

Hackaday Links August 31, 2012

Landing a fixed-wing through hotel balcony french doors

As you can see, launching an RC airplane off of a hotel balcony is easy. But watch the video and you’ll find out trying to fly through the french doors for a landing is another story. [Team BlackSheep] hits (har, har) Thailand in this collection of breathtaking flights.

Quieting rack-mount switch for home use

[VictorB] got his hands on this switch to beef up his home network. Since the three fans on the back sound like a jet engine he did some cutting to use a larger, quieter fan.

Component package alphabet

Sure, you probably know what SOIC stands for, but what is a CSP? You can clear things up a bit by studying your IC Alphabet.

ZX Spectrum audio card

For those still looking to squeeze everything they can out of a classic ZX Spectrum, here’s a way to improve the audio with a custom sound card (translated).

AVR programmer reprogrammed as an NES controller interface

[Slack] modified his USBasp programmer to uses as an NES controller interface. The hardware can be had on eBay for under $10, and he was already using one as a dev board. After seeing this USB to NES dongle post it didn’t take long to make the programmer into a gaming tool.

Adding Payload To An RC Cessna

For just a few bucks you can add a payload to your flying toys. In this case it’s a Cessna RC plane which now has an added surprise. The first thing to be dropped was a parachute with a weight on it (for testing purposes). But there are hints of future projects that will use the same system for different purposes.

As you can see in the image above, the system depends on an additional compartment attached to the bottom of the plane. It was built from foam board to keep the weight down and connects using rare earth magnets. The bottom of the enclosure acts as the door, hinging on a servo motor with a bamboo skewer as the axle. So far the test drops have gone pretty well, but some more work needs to be done with the parachute design. It only opens about 60% of the time. We can sympathize, having had to work out some of our own parachute issues.

Don’t miss video from the plane as well as the ground after the break.

Continue reading “Adding Payload To An RC Cessna”