Flexible PCB Robot Flops Around To Get Around

In his continuing quest to reduce the parts count of a robot as far as possible, [Carl Bugeja] has hit upon an unusual design: robots built of almost nothing but PCBs.

Admittedly, calling these floppy four-legged critters robots is still a bit of a stretch at this point. The video below shows that while they certainly move under their own power, there’s not a lot of control to the movement – yet. [Carl]’s design uses an incredibly fragile looking upper arm assembly made from FR4. Each arm holds a small neodymium magnet suspended over the center of a flexible PCB coil, quite like those we’ve seen him use before as actuators and speakers. The coils are controlled by a microcontroller living where the four legs intersect. After a few uninspiring tethered tests revealed some problems with the overly compliant FR4 magnet supports, [Carl] made a few changes and upped the frequency of the leg movements. This led to actual motion and eventually to untethered operation, with the bot buzzing around merrily.

There are still issues with the lack of stiffness of the magnet arms, but we’re optimistic that [Carl] can overcome them. We like this idea a lot, and can see all sort of neat applications for flapping and flopping locomotion.

Continue reading “Flexible PCB Robot Flops Around To Get Around”

Sphero RVR’s Quest For A Niche In Introductory Robotics

Thanks to internet commerce opening up a global marketplace, it is now easier than ever for a budding roboticist to get started. There are so many robot kits available, across such a wide range of price and sophistication, that deciding which one to buy becomes a challenging project in itself. Is there room for another product in the crowded introductory robotics market? Sphero believes so, and they’ve launched RVR to explore not just workshops and classrooms, but also to see if they can find a market niche.

At the low end of this market, we can go online and buy a super simple chassis – two small wheeled gear motors and a chassis plate of laser-cut acrylic – for pizza money. At the high end, we have robots that cost as much as a car. Sphero’s RVR slots somewhere above Wonder Workshop’s Dash, but below LEGO’s Mindstrom EV3. Products in this range are expected to take care of low-level motion control details, so beginners won’t get bogged down by things like PID tuning before their robot can drive in a straight line. Sphero engineers are certainly capable of hiding such annoying details from beginners, with their experience in consumer robotics.

But a big selling point here is completely opposite from closed-box consumer electronics: RVR is built to be extensible. Not with proprietary accessories & add-on kits like many of its competitors, but with the components we know and love on Hackaday pages: Raspberry Pi, micro:bit, and whatever else willing to communicate with RVR via its UART port and powered by RVR’s on board five volt power supply. Proper care and feeding of a lithium-ion battery is also one of the beginner-unfriendly details taken care of. But RVR isn’t finalized – one of the reason Sphero stated for launching via Kickstarter is to get customer feedback. Certainly the funding goal of $150,000 (easily met in a few hours) was unlikely to be the most important part for a company of Sphero’s size.

We hope RVR will help introduce a new audience to building their own robots. When they’re ready to grow beyond Sphero’s kit, Hackaday is happy to help show the way. If you have a 3D printer, there’s never been a better time to build your own robot. (Zerobot is on one editor’s to-do list.) Those fascinated by electronics can peek under the covers of low-level motor control, and there’s always room to explore high level machine vision and neural networks.

Whatever it takes to get you started, just get started!

Continue reading “Sphero RVR’s Quest For A Niche In Introductory Robotics”

Travelling The Oregon Trail With An Apple II Robot

For one reason or another, we’re going with a retro-futuristic 80s aesthetic in this case, [Mike] decided to turn an Apple IIe into a robot. If you have to ask why, you’ll never know, but this project does have some interesting things going for it. There’s a voice synthesizer, a brand spankin’ new power supply, and it rolls around on the floor thanks to Apple BASIC.

Since this is a mobile robot, there needs to be a power supply in there somewhere. The Apple II had a fantastic switching power supply, but it ran off mains voltage. To make this Apple run off a 14.8 V LiPO battery, [Mike] needed to re-engineer this power supply to give +5, +12, -5, and -12 Volts. The easiest is the positive voltage, and for that, he used a big ‘ol LM1084 linear regulator for the +5 V line. This outputs a ton of heat and probably isn’t the best solution, but it is a solution that works. The +12 line was again another linear regulator, an LM7812CV. Since this is dropping 14.8 V down to 12, the efficiency isn’t that bad, and since there’s no floppy drive it’s not pulling much current anyway. The negative voltages are a MAX764 / MAX765 inverting switching regulators. This completely replaces the original power supply in the Apple II, and is a decent reference design for anyone who wants to make a luggable Apple II laptop.

To move this thing around, the motors run on their own 11.1 V LiPO, with a bunch of Pololu gear tying everything together. The BASIC code was written on an emulator, transferred over with the Floppy Emu. Movement is controlled through the output pins on the joystick port, and there’s a text to speech module that was obviously needed and ties this project together wonderfully. You can check out the video demo of the build below.

Continue reading “Travelling The Oregon Trail With An Apple II Robot”

Automate The Freight: Amazon Tackles The Last Mile Problem On Wheels

We’ve been occasionally exploring examples of what could be the killer application for self-driving vehicles: autonomous freight deliveries, both long-haul and local, as well as some special use cases. Some, like UAV delivery of blood and medical supplies in Kenya, have taken off and are becoming both profitable and potentially life-saving. Others, like driverless long-haul trucking, made an initial splash but appear to have gone quiet since then. This is to be expected, as the marketplace picks winners and losers in a neverending quest to maximize return on investment. But the whole field seems to have gotten a bit sleepy lately, with no big news of note for quite a while.

That changed last week with Amazon’s announcement of Scout, their autonomous delivery vehicle. Announced first on Amazon’s blog and later picked up by the popular and tech press who repeated the Amazon material almost verbatim, Scout appears at first glance to be a serious attempt by Amazon to own the “last mile” of delivery – the local routes that are currently plied by the likes of UPS, FedEx, and various postal services. Or is it?

Continue reading “Automate The Freight: Amazon Tackles The Last Mile Problem On Wheels”

This 3D Printer Is Soft On Robots

It always seems to us that the best robots mimic things that are alive. For an example look no further than the 3D printed mesh structures from researchers at North Carolina State University. External magnetic fields make the mesh-like “robot” flex and move while floating in water. The mechanism can grab small objects and carry something as delicate as a water droplet.

The key is a viscous toothpaste-like ink made from silicone microbeads, iron carbonyl particles, and liquid silicone. The resulting paste is amenable to 3D printing before being cured in an oven. Of course, the iron is the element that makes the thing sensitive to magnetic fields. You can see several videos of it in action, below.

Continue reading “This 3D Printer Is Soft On Robots”

Badland Brawler Lets Arduino Tackle Terrain

For an electronics person, building the mechanics of a robot — especially a robust robot — can be somewhat daunting. [Jithin] started with an off-the-shelf 4 wheel drive chassis to build an off-road Arduino robot he calls the Badland Brawler. The kit was a bit over $100, but as you can see in the video below, it is pretty substantial, with an enclosed frame and large mud tires.

The remaining parts include an Arduino, a battery, and a motor driver IC. The Arduino is one with WiFi (an MKR 1000, in fact) and there’s a phone app for controlling the robot.

Honestly, once you have the chassis taken care of, the rest is pretty easy. Of course, the phone app is a bit more effort, but you could replace it in a number of ways. Blynk, comes to mind, for example.

The motor drivers are easy to figure out. This would be a great platform for some sensors to allow for more autonomy. We liked how the frame had mount points for a lot of different boards and sensors and could hold everything, for the most part, inside. That’s probably a good idea for a robot which will be traversing rugged terrain.

If you do decide to roll your own app with Blynk, we’ve done it with a very different kind of robot. Four-wheel drive robots don’t have to be big, as we’ve seen in the past.

Continue reading “Badland Brawler Lets Arduino Tackle Terrain”

Robot Can’t Take Its Eyes Off The Bottle

Robots, as we currently understand them, tend to run on electricity. Only in the fantastical world of Futurama do robots seek out alcohol as both a source of fuel and recreation. That is, until [Les Wright] and his beer seeking robot came along. (YouTube, video after the break.)

A Raspberry Pi 3 provides the brains, with an Intel Neural Compute stick plugged in as an accelerator for neural network tasks. This hardware, combined with the OpenCV image detection software, enable the tracked robot to identify objects and track their position accordingly.

That a beer bottle was chosen is merely an amusing aside – the software can readily identify many different object categories. [Les] has also implemented a search feature, in which the robot will scan the room until a target bottle is identified. The required software and scripts are available on GitHub for your perusal.

Over the past few years, we’ve seen an explosion in accelerator hardware for deep learning and neural network computation. This is, of course, particularly useful for robotics applications where a link to cloud services isn’t practical. We look forward to seeing further development in this field – particularly once the robots are able to open the fridge, identify the beer, and deliver it to the couch in one fell swoop. The future will be glorious!

 

Continue reading “Robot Can’t Take Its Eyes Off The Bottle”