What Better Than A Hexapod?

What’s more awesome than a normal hexapod robot? What about a MEGA hexapod?

Max the Megapod, a six-legged 3D-printed walking robot, is an open source, Arduino-based, Bluetooth controlled, Scratch programmable creation made possible by [Steven Pendergrast]. The design for Max was based on a previous hexapod project, Vorpal the Hexapod, which has since been built at hundreds of schools worldwide.

Max clocks in at two feet in diameter, expanding to three when sprawled out on the ground. In addition, the hexapod is able to dance, walk, and run as fast as the smaller version, covering ground at twice the speed due to its size.

The scaling for the project – about 200% from the original hexapod – required some creativity, as the goal was for the components to be printed on a modest-sized printer with an 8 inch cube bed. In addition, since Max weighs 9 pounds on average, real bearings (608 Skate bearings) needed to be used for the servo mounts.

The electrical system had to be changed to account for the larger currents drawn by the larger servos (MG958s). and the power distribution harness needed to be redesigned. The current harness take about two hours to build for the larger hexapod, compared to 15 minutes for the original design.

The results are both hilarious and adorable, especially given the endless modifications made to give Max a unique flair. Perhaps a GIGApod could be coming up next?

Continue reading “What Better Than A Hexapod?”

Gutted Hoverboard Becomes Formidable Track-Drive Robot

When “hoverboards” first came out, you may have been as disappointed as we were that they did not even remotely fulfill the promises of Back to the Future II. Nothing more than a fancified skateboard, hoverboards are not exactly groundbreaking technology. That doesn’t mean they’re not useful platforms for hacking, though, as this hoverboard to track-propelled robot tank conversion proves.

Most of the BOM for this build came from the junk bin – aluminum extrusions, brackets, and even parts cannibalized from a 3D-printer. But as [pasoftdev] points out, the new-in-box hoverboard was the real treasure trove of components. The motors, the control and driver electronics, and the big, beefy battery were all harvested and mounted to the frame. To turn the wheels into tracks, [pasoftdev] printed some sprockets to fit around the original tires. The tracks were printed in sections and screwed to the wheels. Idlers were printed in sections too, using central hubs and a clever method for connecting everything together into a sturdy wheel. Printed tank tread links finished the rolling gear eventually; each of the 34 pieces took almost five hours to print. The dedication paid off, though, as the 15-kg tank is pretty powerful; the brief video below shows it towing an office chair around without any problems.

We noticed that [pasoftdev] found the assembly of the tread links a bit problematic. These 3D-printed links that are joined by Airsoft BBs might make things a little easier next time.

Continue reading “Gutted Hoverboard Becomes Formidable Track-Drive Robot”

OpenLeg – The Open Source Robot Leg

There’s an old saying about standing on the shoulders of giants, but how about doing so with an open source leg? Well, your robots might do so at least, thanks to OpenLeg, a new open source project for building robot legs. Created by [Joey Byrnes], this started out as a senior project for a course at the University of Illinois. The idea is to create a robot leg that others can use to build four-legged robots that can amble around the neighborhood, much like those built by Boston Dynamics. Continue reading “OpenLeg – The Open Source Robot Leg”

Meccano Max Gets Hacked

There are plenty of “smart” toys out in the marketplace, some with more features than others. Nevertheless, most makers desire complete control over a platform, something that’s often lacking in any commercial offering. It was just this desire that motivated [MrDreamBot] to start hacking the Meccano Max.

Meccano Max is a small-statured companion robot, at about 30 centimeters high. Not content with the lack of an API, [MrDreamBot] decided to first experiment with creating an Arduino library to run Max’s hardware. With this completed, work then began on integrating a Hicat Livera devboard into the hardware. This is an embedded Linux system with Arduino compatibility, as well as the ability to stream video and connect over WiFi. Thus far, it’s possible to control Max through a browser, while viewing a live video feed from the ‘bot. It’s also possible to customize the expressions displayed on Max’s face.

Oftentimes, it pays to replace stock hardware rather than try and work with the limitations of the original setup, and this project is no exception. With that said, we’re still hoping someone out there will find a way to get Jibo back online. Look after your robot friends! Video after the break.

Continue reading “Meccano Max Gets Hacked”

Your Next Robot Needs Googly Eyes, And Other Lessons From Disney

There are so many important design decisions behind a robot: battery, means of locomotion, and position sensing, to name a few. But at a library in Helsinki, one of the most surprising design features for a librarian’s assistant robot was googly eyes. A company called Futurice built a robot for the Oodi library and found that googly eyes were a very important component.

The eyes are not to help the robot see, because of course they aren’t functional — at least not in that way. However without the eyes, robot designers found that people had trouble relating to the service robot. In addition, the robot needed emotions that it could show using the eyes and various sounds along with motion. This was inspired, apparently, by Disney’s rules for animation. In particular, the eyes would fit the rule of “exaggeration.” The robot could look bored when it had no task, excited when it was helping people, and unhappy when people were not being cooperative.

Continue reading “Your Next Robot Needs Googly Eyes, And Other Lessons From Disney”

Speed Up Filming With This Jawdropping 8-Axis Camera Crane

These days, it can feel like a project doesn’t exist unless you’ve posted a video on the Internet about it. [mingul] was in the process of producing his own videos, but found having to repeatedly move and set up the camera tiring. Naturally, a completely overkill eight-axis motion control robot was the solution. Video embedded below the break.

The scale of the build is something to behold. With 4.5 m travel on the X-axis, 6.5 m on the Y, and 2.1 m on the Z, it’s capable of traversing the full length of [mingul]’s workshop. Tilt, pan, and roll axes all feature 540 degrees of rotation, and there’s motors to control zoom and focus on the camera, too. Through software like Dragonframe, it’s possible to program complicated camera moves, and techniques like the classic dolly zoom are a cinch with such a versatile rig. It’s also possible to control the movement in real-time with a wireless Xbox controller.

[mingul] reports the build took a full three months of CNC machining, 3D printing and assembly. It’s a big step above a simple motorized camera slider, but we all have to start somewhere.

Continue reading “Speed Up Filming With This Jawdropping 8-Axis Camera Crane”

Skid Steer Mows Airport Grass Autonomously

Sure, mowing the lawn is a hassle. No one really wants to spend their time and money growing a crop that doesn’t produce food, but we do it anyway. If you’re taking care of a quarter acre in the suburbs it’s not that much of a time sink, but if you’re taking care of as much grass as [Roby], you’d probably build something similar to his autonomous skid-steer mower, too.

This thing isn’t a normal push mower outfitted with some random electronics, either. This is a serious mower that is essentially a tractor with blades attached to it. Since it’s a skid steer, it turns by means of two handles that control the speed of the left or right drive wheels. Fabricating up some servo linkages to attach them to specialized servos takes care of the steering portion, and the brain is ArduPilot hooked up to a host of radios, GPS, and a compass to allow it to drive all around the runways at the airport without interfering with any aircraft.

This is a serious build and goes into a lot of detail about how servos and linkages should behave, how all the software works, and the issues of actually mounting everything to the mower. The entire project is open source too, so even if you don’t have a whole airport runway to mow you might be able to find something in there to help with your little patch of grass.

Thanks to [Vincent] for the tip!

Continue reading “Skid Steer Mows Airport Grass Autonomously”