Hackaday Links Column Banner

Hackaday Links: September 10, 2017

Hackaday is 13! We’re going through a bit of a rebellious phase. There’s hair where there wasn’t hair before. Thirteen years ago (Sept. 5, 2004), [Phil Torrone] published the first Hackaday Post. [Phil] posted a great writeup of the history of Hackaday over on the Adafruit blog — we were saved from the AOL borg because of the word ‘hack’ — and interviewed the former and current editors of your favorite DIY website. Here’s to 13 more years and to [Phil] finding a copy of the first version of the Jolly Wrencher designed in Macromedia Flash.

Hackaday is having an unconference in the UK! Tickets for next weekend’s event went fast, but don’t worry — we’re hosting a Bring A Hack the day before.

Hurricanes are an awesome force of nature. As we learned from Harvey a week ago, livestreamed footage from the eyewall of a hurricane is fascinating. [Jeff Piotrowski] seems to be the streamer of choice. If you’re looking for something to gawk at, here you go.

Another burn is over, and I still have no idea how they moved the fuselage of a 747 from Palmdale to the playa.

You know we’re doing this whole Hackaday Prize thing where we’re giving a ton of money to people for creating cool hardware, right? We’re almost done with that. The last round of The Hackaday Prize is going on right now. The theme is anything goes, or rather there is no theme. The goal of this round is to build cool stuff. This round ends on October 16th, and yes, we’ll have the results for the Assistive Technologies round out shortly.

[Prusa] makes a lot of printers, and that means he needs to make a lot of parts to make a lot of printers. Obviously, a PTFE-cutting robot is the solution to this problem

October 5th is the Open Source Hardware Summit in Denver. Hackaday and Tindie are going, and it’s going to be a blast.  The location has moved in the last week — now it’s about half a mile away from the old venue. The speaker schedule is up, board nominations are open, and somewhere, someone is organizing a Lulzbot/Sparkfun booze cruise the day after the summit. I should be getting a van to add capacity to this trip, so if you’re interested leave a note in the comments.

Educational Robot For Under $100

While schools have been using robots to educate students in the art of science and engineering for decades now, not every school or teacher can afford to put one of these robots in the hands of their students. For that reason, it’s important to not only improve the robots themselves, but to help drive the costs down to make them more accessible. The CodiBot does this well, and comes in with a price tag well under $100.

The robot itself comes pre-assembled, and while it might seem like students would miss out on actually building the robot, the goal of the robot is to teach coding skills primarily. Some things do need to be connected though, such as the Arduino and other wires, but from there its easy to program the robot to do any number of tasks such as obstacle avoidance and maze navigation. The robot can be programmed using drag-and-drop block programming (similar to Scratch) but can also be programmed the same way any other Arduino can be.

With such a high feature count and low price tag, this might be the key to getting more students exposed to programming in a more exciting and accessible way than is currently available. Of course, if you have a little bit more cash lying around your school, there are some other options available to you as well.

3D Printed Robotic Arms For Sign Language

A team of students in Antwerp, Belgium are responsible for Project Aslan, which is exploring the feasibility of using 3D printed robotic arms for assisting with and translating sign language. The idea came from the fact that sign language translators are few and far between, and it’s a task that robots may be able to help with. In addition to translation, robots may be able to assist with teaching sign language as well.

The project set out to use 3D printing and other technology to explore whether low-cost robotic signing could be of any use. So far the team has an arm that can convert text into finger spelling and counting. It’s an interesting use for a robotic arm; signing is an application for which range of motion is important, but there is no real need to carry or move any payloads whatsoever.

Closeup of hand actuators and design. Click to enlarge.

A single articulated hand is a good proof of concept, and these early results show some promise and potential but there is still a long ways to go. Sign language involves more than just hands. It is performed using both hands, arms and shoulders, and incorporates motions and facial expressions. Also, the majority of sign language is not finger spelling (reserved primarily for proper names or specific nouns) but a robot hand that is able to finger spell is an important first step to everything else.

Future directions for the project include adding a second arm, adding expressiveness, and exploring the use of cameras for the teaching of new signs. The ability to teach different signs is important, because any project that aims to act as a translator or facilitator needs the ability to learn and update. There is a lot of diversity in sign languages across the world. For people unfamiliar with signing, it may come as a surprise that — for example — not only is American Sign Language (ASL) related to French sign language, but both are entirely different from British Sign Language (BSL). A video of the project is embedded below.

Continue reading “3D Printed Robotic Arms For Sign Language”

Hackaday Prize Entry: E.R.N.I.E. Teaches Robotics And Programming

[Sebastian Goscik]’s entry in the 2017 Hackaday Prize is a line following robot. Well, not really; the end result is a line following robot, but the actual project is about a simple, cheap robot chassis to be used in schools, clubs, and other educational, STEAM education events. Along with the chassis design comes a lesson plan allowing teachers to have a head start when presenting the kit to their students.

The lesson plan is for a line-following robot, but in design is a second lesson – traffic lights which connect to a main base through a bus and work in sync. The idea of these lessons is to be fairly simple and straightforward for both the teachers and the students in order to get them more interested in STEM subjects.

What [Sebastian] noticed about other robot kits was that they were expensive or complicated or lacked tutorials. Some either came pre-assembled or took a long time to assemble. [Sebastian] simplified things – The only things required after the initial assembly of the chassis are: Zip-ties, electrical tape and a few screws. The PCB can’t be disassembled, but the assembled PCB can be reused.

The hardware [Sebastian] came up with consists of some 3mm material that can be laser cut (acrylic or wood) and a sensor board that has 5 IR LEDs and corresponding IR sensors. The chassis can be put together using nothing more than a Phillips screwdriver, and the sensor PCBs are well documented so that soldering them is as easy as possible. An Arduino is used as the brains of the unit.

[Sebastian] has come up with a great project and the idea of a platform like this with a couple of lesson plans included is a great one. He’s released the hardware under an Open Hardware license as well so others can share and add-on. Of course, there are other line following robots, like this miniature one created with analog circuitry, and there are other open source robots for teaching, like this one. But [Sebastian]’s focus on the lesson plans is a really unique way of approaching the problem – one that will hopefully be very successful.

Continue reading “Hackaday Prize Entry: E.R.N.I.E. Teaches Robotics And Programming”

Krave antweight battlebots

Krave Antweight Robot Gets Eaten And Stays Alive

The battle’s are done and the results are in — [AltaPowderDog]’s, aka [Carter Hurd],  cardboard and foam armor, lightweight Krave robot beat its metal cousins in 2016 and fared well in 2017. How did a cardboard Krave cereal box and foam board robot do that you ask? The cardboard and foam outer structure was sliced, smashed and generally eaten while the delicate electronics, motors and wheels remained buried safely inside.

We covered the making of his 2016 version but didn’t follow-up with how it fared in that year’s Illinois Bot Brawl competition. As you can see in the exciting first video below, despite suffering repeated severe damage to its armor, it won first place in the 1 lb Antweight category!

For 2017 he made another one but managed to halve the weight — and so he made two of them! By starting them both within a twelve-inch by twelve-inch area, they were allowed to fight as a team. How did he make it lighter? Partly it was done by doing away with the ability to lift the metal lip in front, the wheels were reduced from four to two, and a smaller servo was used for opening and closing the mouth. The full build video is shown below along with a video of the 2017 battles wherein he won seventh place.

Continue reading “Krave Antweight Robot Gets Eaten And Stays Alive”

Step climbing rocker-bogie robot

Simple Step-Climbing Robot Climbs Like It’s On Mars

[Navin Khambhala] is a master at making simple what most would expect to be a complex build. Now he’s done it again with a remote controlled robot that can easily climb steps and role over rough terrain. The parts count is small and many of them are commonly available.

The suspension that makes it all possible is the rocker-bogie. It’s the same suspension we’ve all seen used by the various rovers ambling around on Mars. The whole frame is made of PVC pipes with some connecting metal bars, and each wheel has its own twelve-volt DC motor. Motor control is done simply with a module that combines the 2.4 GHz receiver with motor controllers. When you watch the video below, note where only one hole is drilled through the PVC for making connections instead of two holes. Where there’s only one hole, the two sections of PVC are free to rotate independently of each other. Turning the robot is done by rotating the wheels on one side in one direction and the wheels on the other side in the opposite direction. This is called a differential drive or tank drive, and we’ve highlighted it before for use in making hamster-drive type BB-8 droids.

Continue reading “Simple Step-Climbing Robot Climbs Like It’s On Mars”

Hackaday Prize Best Product Finalist: Reconfigurable Robots

Reconfigurable robots have been around for ages. One of the first and most popular reconfigurable robots came out of the MIT Media Lab, and last year, DTTO, a modular snake-like robot, won the 2016 Hackaday Prize. There’s a lot that can be learned from a robot that can turn from a walker to a swimmer to something that clambers over rough terrain, and [Salvador]’s EMME does just that. It’s a 3D printed robot and controller that’s the closest you can get to, ‘the Lego of robots’. All you need to do is plug some wheels into a controller and you’re off to the races.

[Salvador]’s EMME is a brilliant little robot that’s only made of a few generic parts. These parts snap together or join with magnets to turn into any device you can imagine that somehow turns rotation of a wheel into linear motion. All the parts are 3D printed, work without cables or connectors, and the robot itself is controlled by a wireless gem-shaped 3D printed controller.

Already, [Salvador] has on-road wheels for EMME, off-road wheels, above-water wheels, and submersible accessories. This is already an all-terrain robot that’s easy to put together and easy to control, but [Salvador] isn’t done yet. he’s working on new hardware based on the ESP32 and working on the vast amount of documentation required for a robot that can do anything.

You can check out [Salvador]’s pitch video for EMME below.

Continue reading “Hackaday Prize Best Product Finalist: Reconfigurable Robots”