Solar Supercapacitor Lamp Probably Won’t Get You Saved At Sea

Most solar lights are cheap garbage that exist just to put more microplastics into the environment as they degrade in short order. [Jeremy Cook] built his own solar light, however, and this one might just last a little longer.

Most solar lights rely on the cheapest nickel-cadmium or nickel-metal hydride cells that are available on the market. They don’t tend to have a lot of capacity and they wear out incredibly fast. [Jeremy] went a different route for his build, though, instead relying on a rather tasty supercapacitor to store energy. Unlike a rechargeable battery, that may only last a few thousand cycles, these supercaps are expected to perform over 500,000 charge/discharge cycles without failure. With such longevity, [Jeremy] suggests his build could last a full 1369.8 years, assuming it charged and discharged once a day. Whether the plastic transistor, LEDs, or diode could hold up over such a long period is another question entirely.

Electronically, the build is relatively simple. The solar panel collects light energy and turns it into electricity, charging the supercaps through a diode. The supercaps are only able to discharge through a transistor, which only turns on when the voltage output by the solar panel drops at night time, and the voltage on the base becomes lower than that on the emitter. When current flows through the transistor, it then lights the LED in turn and the device glows in the darkness. As a nice touch, the whole circuit is installed in a glass jug of syrup originally sourced from Costco. Files are on Github for those eager to explore further.

Given the light-in-a-bottle construction, [Jeremy] also playfully imagined that a lamp like this could theoretically be used as a safety device. If lost at sea, you could charge it using the sun and try and use it to signal for help. However, upon casually exploring the concept, he notes that a small solar-powered light will only raise the chance of a far-off ocean rescue from “extremely unlikely” to “still very unlikely.”

You can do all kinds of neat things with free energy from the sun, from mowing your lawn to processing waste products. Video after the break.

Continue reading “Solar Supercapacitor Lamp Probably Won’t Get You Saved At Sea”

Damn Fine (Solar Powered) Coffee

The folks at Low Tech Magazine are here again, this time with a solar powered coffee maker. Lest you think of a large parabolic mirror with a pot at its focus, in this case the device is much more friendly. It’s a table-top appliance that relies upon a 100 W, 12 V panel for its operation.

They make the point that an electric coffee pot requires at least 300 W to work, so what’s the secret? In this case, insulation, as a standard moka pot is placed within a nichrome heating element set in mortar and surrounded by cork. On the outside are tiles, though they appear largely ornamental and the write-up suggests you could experiment with other materials to serve as an enclosure.

It appears to be an effective coffee maker, with the significant caveat that it’s hardly fast. In full sunlight the first pot takes over an hour to brew, with subsequent ones once it’s up to temperature being somewhat faster. But you can’t argue with the idea of free power, even if your favourite caffeinated beverage may now take a while to appear.

We like this idea, despite its slow brewing. We’ve featured Low Tech Magazine before, not least in their solar powered oven.

Ask Hackaday: When Good Lithium Batteries Go Bad

Friends, I’ve gotten myself into a pickle and I need some help.

A few years back, I decided to get into solar power by building a complete PV system inside a mobile trailer. The rationale for this doesn’t matter for the current discussion, but for the curious, I wrote an article outlining the whole design and build process. Briefly, though, the system has two adjustable PV arrays mounted on the roof and side of a small cargo trailer, with an integrated solar inverter-charger and a 10-kWh LiFePO4 battery bank on the inside, along with all the usual switching and circuit protection stuff.

It’s pretty cool, if I do say so myself, and literally every word I’ve written for Hackaday since sometime in 2023 has been on a computer powered by that trailer. I must have built it pretty well, because it’s been largely hands-off since then, requiring very little maintenance. And therein lies the root of my current conundrum.

Continue reading “Ask Hackaday: When Good Lithium Batteries Go Bad”

Multi-Use Roof Eliminates Roof

One of the biggest downsides of installing solar panels on a rooftop is that maintenance of the actual roof structure becomes much more difficult with solar panels in the way. But for many people who don’t have huge tracts of land, a roof is wasted space where something useful could otherwise go. [Mihai] had the idea of simply eliminating traditional roofing materials altogether and made half of this roof out of solar panels directly, with the other half being put to use as a garden.

Normally solar panels are installed on top of a roof, whether it’s metal or asphalt shingles or some other material, allowing the roof to perform its normal job of keeping weather out of the house while the solar panels can focus on energy generation. In this roof [Mihai] skips this step, having the solar panels pull double duty as roof material and energy generation. In a way this simplifies things; there’s less to maintain and presumably any problems with the roof can be solved by swapping out panels. But we would also presume that waterproofing it might be marginally more difficult.

On the antisolar side of the roof, however, [Mihai] foregoes the solar panels in favor of a system that can hold soil for small garden plants. Putting solar panels on this side of the roof wouldn’t generate as much energy but the area can still be useful as a garden. Of course we’d advise caution when working on a garden at height, but at least for the solar panels you can save some trips up a ladder for maintenance by using something like this robotic solar panel scrubber.

Continue reading “Multi-Use Roof Eliminates Roof”

A fisheye lens picture over the Junma Solar Power station in the Mongolian desert. There is a large image of a horse made out of solar panels in the image. A sunset is visible in the upper right of the image, but most the picture is brown sand where there aren't dark blue solar panels.

China’s Great Solar Wall Is A Big Deal

Data centers and the electrification of devices that previously ran on fossil fuels is driving increased demand for electricity around the world. China is addressing this with a megaproject that is a new spin on their most famous piece of infrastructure.

At 250 miles long and 3 miles wide with a generating capacity of 100 GW, the Great Solar Wall will be able to provide enough energy to power Beijing, although the energy will more likely be used to power industrial operations also present in the Kubuqi Desert. NASA states, “The Kubuqi’s sunny weather, flat terrain, and proximity to industrial centers make it a desirable location for solar power generation.” As an added bonus, previous solar installations in China have shown that they can help combat further desertification by locking dunes in place and providing shade for plants to grow.

Engineers must be having fun with the project as they also designed the Guinness World Record holder for the largest image made of solar panels with the Junma Solar Power Station (it’s the horse in the image above). The Great Solar Wall is expected to be completed by 2030 with 5.4 GW already installed in 2024.

Want to try solar yourself on a slightly smaller scale? How about this solar thermal array inspired by the James Webb Telescope or building a solar-powered plane?

Linear Solar Chargers For Lithium Capacitors

For as versatile and inexpensive as switch-mode power supplies are at all kinds of different tasks, they’re not always the ideal choice for every DC-DC circuit. Although they can do almost any job in this arena, they tend to have high parts counts, higher complexity, and higher cost than some alternatives. [Jasper] set out to test some alternative linear chargers called low dropout regulators (LDOs) for small-scale charging of lithium ion capacitors against those more traditional switch-mode options.

The application here is specifically very small solar cells in outdoor applications, which are charging lithium ion capacitors instead of batteries. These capacitors have a number of benefits over batteries including a higher number of discharge-recharge cycles and a greater tolerance of temperature extremes, so they can be better off in outdoor installations like these. [Jasper]’s findings with using these generally hold that it’s a better value to install a slightly larger solar cell and use the LDO regulator rather than using a smaller cell and a more expensive switch-mode regulator. The key, though, is to size the LDO so that the voltage of the input is very close to the voltage of the output, which will minimize losses.

With unlimited time or money, good design can become less of an issue. In this case, however, saving a few percentage points in efficiency may not be worth the added cost and complexity of a slightly more efficient circuit, especially if the application will be scaled up for mass production. If switched mode really is required for some specific application, though, be sure to design one that’s not terribly noisy.

Adaptive Optics Take Clearest Pictures Of The Sun Yet

It’s sometimes easy to forget that the light in the sky is an actual star. With how reliable it is and how busy we tend to be as humans, we can take that incredible fact and stow it away and largely go on with our lives unaffected. But our star is the thing that gives everything on the planet life and energy and is important to understand. Humans don’t have a full understanding of it either; there are several unsolved mysteries in physics which revolve around the sun, the most famous of which is the coronal heating problem. To help further our understanding a number of scientific instruments have been devised to probe deeper into it, and this adaptive optics system just captures some of the most impressive images of it yet.

Adaptive optics systems are installed in terrestrial telescopes to help mitigate the distortion of incoming light caused by Earth’s atmosphere. They generally involve using a reference source to measure these distortions, and then make changes to the way the telescope gathers light, in this case by making rapid, slight changes to the telescope’s mirror. This system has been installed on the Goode Solar Telescope in California and has allowed scientists to view various solar phenomena with unprecedented clarity.

The adaptive optics system here has allowed researchers to improve the resolution from the 1000 km resolution of other solar telescopes down to nearly the theoretical limit of this telescope—63 km. With this kind of resolution the researchers hope that this clarity will help shine some light on some of the sun’s ongoing mysteries. Adaptive optics systems like this aren’t just used on terrestrial telescopes, either. This demonstration shows how the adaptive optics system works on the James Webb Space Telescope.

Thanks to [iliis] for the tip!