Pinning Tails On Satellites To Help Prevent Space Junk

Low Earth orbit was already relatively crowded when only the big players were launching satellites, but as access to space has gotten cheaper, more and more pieces of hardware have started whizzing around overhead. SpaceX alone has launched nearly 1,800 individual satellites as part of its Starlink network since 2019, and could loft as many as 40,000 more in the coming decades. They aren’t alone, either. While their ambitions might not be nearly as grand, companies such as Amazon and Samsung have announced plans to create satellite “mega-constellations” of their own in the near future.

At least on paper, there’s plenty of room for everyone. But what about when things go wrong? Should a satellite fail and become unresponsive, it’s no longer able to maneuver its way out of close calls with other objects in orbit. This is an especially troubling scenario as not everything in orbit around the Earth has the ability to move itself in the first place. Should two of these uncontrollable objects find themselves on a collision course, there’s nothing we can do on the ground but watch and hope for the best. The resulting hypervelocity impact can send shrapnel and debris flying for hundreds or even thousands of kilometers in all three dimensions, creating an extremely hazardous situation for other vehicles.

One way to mitigate the problem is to design satellites in such a way that they will quickly reenter the Earth’s atmosphere and burn up at the end of their mission. Ideally, the deorbit procedure could even activate automatically if the vehicle became unresponsive or suffered some serious malfunction. Naturally, to foster as wide adoption as possible, such a system would have to be cheap, lightweight, simple to integrate into arbitrary spacecraft designs, and as reliable as possible. A tall order, to be sure.

But perhaps not an impossible one. Boeing subsidiary Millennium Space Systems recently announced it had successfully deployed a promising deorbiting device developed by Tethers Unlimited. Known as the Terminator Tape, the compact unit is designed to rapidly slow down an orbiting satellite by increasing the amount of drag it experiences in the wispy upper atmosphere.

Continue reading “Pinning Tails On Satellites To Help Prevent Space Junk”

Six Wheels (En)rolling: Mars Rovers Going To School

Few things build excitement like going to space. It captures the imagination of young and old alike. Teachers love to leverage the latest space news to raise interest in their students, and space agencies are happy to provide resources to help. The latest in a long line of educator resources released by NASA is an Open Source Rover designed at Jet Propulsion Laboratory.

JPL is the birthplace of Mars rovers Sojourner, Spirit, Opportunity, and Curiosity. They’ve been researching robotic explorers for decades, so it’s no surprise they have many rovers running around. The open source rover’s direct predecessor is ROV-E, whose construction process closely followed procedures for engineering space flight hardware. This gave a team of early career engineers experience in the process before they built equipment destined for space. In addition to learning various roles within a team, they also learned to work with JPL resources like submitting orders to the machine shop to make ROV-E parts.

Once completed, ROV-E became a fixture at JPL public events and occasionally visits nearby schools as part of educational outreach programs. And inevitably a teacher at the school would ask “The kids love ROV-E! Can we make our own rover?” Since most schools don’t have 5-axis CNC machines or autoclaves to cure carbon fiber composites, the answer used to be “No.”

Until now.

Continue reading “Six Wheels (En)rolling: Mars Rovers Going To School”

ZBeam

Hackaday Prize Best Product Finalist: Shape Shifting Structures For Space

While [Elon Musk] and [Jeff Bezos] are working on getting us to Mars and the Moon, [Ronald Jaramillo] is working on building structures once we get there. To that end, he’s been developing the ZBeam, two rolls of links that zip together like a zipper to form a rigid beam.

ZBeam making, regolith munching machine
ZBeam making, regolith munching machine

Initially stored in a compact cube targeted to eventually fit in a CubeSat’s dimension’s, 100 mm x 100 mm x 100 mm, the beam emerges from within the cube and will be able to connect with other cubes to form rigid structures. His hope is that they can one day be made automatically from lunar or Martian regolith (loose surface dirt) munching machines. His current one has 160 mm sides and uses a servo hacked to turn continuously.

In his hackaday.io project logs he shows the trial and error he’s gone through to get to his current stage: experimenting with the links to form a more rigid beam, fine tuning the unreeling of the rolls of links to prevent jamming, adding a safety-ratchet-gear to the gearing to overcome speed issues, and more. He currently 3D prints as many connected sets of links as he can on his Prusa i3, and then manually connects sets together to make a longer chain, but he has his eye on the Printrbot Printrbelt for printing arbitrarily long chains in one piece.

You can see one pretty impressive iteration of the ZBeam in action in the video below and more is on his project page. In fact, the judges for the 2017 Hackaday Prize liked [Ronald]’s projects so much that they designated it as a Best Product finalist.

Continue reading “Hackaday Prize Best Product Finalist: Shape Shifting Structures For Space”

Space Tech Helps Athlete Attain World Record

German athlete [Wojtek Czyz] set a new world record for the long jump at the Paralympics 2008 in Beijing, with the aid of his space tech enhanced prosthetic leg. He jumped a record 6.5 meters, 27 centimeters more than the previous record. Prior to switching to his new prosthetic leg for athletic competitions, he was prone to breaking the prosthesis when he performed to the best of his abilities. [Czyz] and his trainer met with ESA’s Technology Transfer Programme (TTP) technology broker MST Aerospace to assess the most important parts of the prosthesis. According to [Dr. Werner Dupont], MST Aerospace Managing Director, the crucial element was the connection angle, or L-bracket. Working with German company ISATEC, they developed a new L-bracket using a much lighter and stronger material from the Alpha Magnetic Spectrometer (AMS), which is an instrument that will be installed on the ISS to study extraterrestrial matter. We find it interesting and pretty cool that space technology can help enhance a disabled athlete’s performance, and think that this could lead to interesting possibilities, even for those who aren’t athletes.

[via Boing Boing]