Cleaning Up The Yard With AI — Avian Intelligence

Despite epithets like “bird-brain,” our feathered friends are actually pretty smart. Being able to maneuver in three dimensions at high speed must have something to do with it, and the cognitive abilities of birds are well-documented and still being researched. So it naturally makes sense to harness avian brainpower to keep one’s yard clean, right?

For the record, the magpies that [Hans] is training are very intelligent and strikingly beautiful birds who delight in swooping down to harass people, and who will gladly steal food from other birds and then poop on it and fly away. So they’re jerks, but that doesn’t mean they can’t be useful jerks. The goal with his BirdBox system is to use classic operant conditioning, where a desired voluntary behavior is reinforced by a reward. In this case, the reward is a treat dispensed by a 3D-printed vibratory dispenser when the bird collects a bottlecap from the yard and deposits it in the proper slot. The video below shows the birds doing exactly what they’re supposed to do.

[Hans] tells us that the trick is getting the birds to accept the BirdBox and to have them integrate it into their “patrol schematic” of their territory. Once that’s done, it’s a simpler matter to have them associate the bottlecaps with the reward. The other challenge is making everything bulletproof, or in this case magpie-proof. Did we mention that magpies are jerks?

The possibilities for trading peanuts for yardwork are endless; [Hans] mentions plans he has for fallen fruit clean-up, and mentions a persistent garden slug problem that the birds might be employed to remediate. If you want to try this, it might be a good idea to brush up on the work of [B.F. Skinner] and his pigeons of war.

Continue reading “Cleaning Up The Yard With AI — Avian Intelligence”

Hackaday Podcast 074: Stuttering Swashplate, Bending Mirrors, Chasing Curves, And Farewell To Segway

Hackaday editors Elliot Williams and Mike Szczys recap a week of hacks. A telescope mirror that can change shape and a helicopter without a swashplate lead the charge for fascinating engineering. These are closely followed by a vibratory wind generator that has no blades to spin. The Open Source Hardware Association announced a new spec this week to remove “Master” and “Slave” terminology from SPI pin names. The Segway is no more. And a bit of bravery and rock solid soldering skills can resurrect that Macbook that has one dead GPU.

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (~65 MB)

Places to follow Hackaday podcasts:

Continue reading “Hackaday Podcast 074: Stuttering Swashplate, Bending Mirrors, Chasing Curves, And Farewell To Segway”

Flexible PCB Robot Flops Around To Get Around

In his continuing quest to reduce the parts count of a robot as far as possible, [Carl Bugeja] has hit upon an unusual design: robots built of almost nothing but PCBs.

Admittedly, calling these floppy four-legged critters robots is still a bit of a stretch at this point. The video below shows that while they certainly move under their own power, there’s not a lot of control to the movement – yet. [Carl]’s design uses an incredibly fragile looking upper arm assembly made from FR4. Each arm holds a small neodymium magnet suspended over the center of a flexible PCB coil, quite like those we’ve seen him use before as actuators and speakers. The coils are controlled by a microcontroller living where the four legs intersect. After a few uninspiring tethered tests revealed some problems with the overly compliant FR4 magnet supports, [Carl] made a few changes and upped the frequency of the leg movements. This led to actual motion and eventually to untethered operation, with the bot buzzing around merrily.

There are still issues with the lack of stiffness of the magnet arms, but we’re optimistic that [Carl] can overcome them. We like this idea a lot, and can see all sort of neat applications for flapping and flopping locomotion.

Continue reading “Flexible PCB Robot Flops Around To Get Around”

A 3D-Printed Bowl Feeder For Tiny SMD Parts

[Andrzej Laczewski] has something big in mind for small parts, specifically SMD resistors and capacitors. He’s not talking much about that project, but from the prototype 3D-printed bowl feeder he built as part of it, we can guess that it’s going to be a pretty cool automation project.

Bowl feeders are common devices in industrial automation, used to take a big pile of parts like nuts and bolts and present them to a process one at a time, often with some sort of orientation step so that all the parts are the right way around. They accomplish this with a vibratory action through two axes, which [Andrzej] accomplishes with the 3D-printed ABS link arms supporting the bowl. The spring moment of the arms acts to twist the bowl slightly when it’s pulled down by a custom-wound electromagnet, such that the parts land in a slightly different place every time the bowl shifts. For the parts on the shallow ramp spiraling up the inside of the bowl, that means a single-file ride to the top. It’s interesting to see how changing the frequency of the signal sent to the coil impacts the feed; [Andrzej] used a function generator to find the sweet spot before settling on a dedicated circuit. Watch it in action below.

We’re really impressed with the engineering that went into this, even if we wonder what the vibration will do to the SMD components. Still, we can’t wait to see this in a finished project – perhaps it’ll be integrated like this Arduino-fied bowl feeder.

Continue reading “A 3D-Printed Bowl Feeder For Tiny SMD Parts”

Automating A Bowl Feeder With Arduino

Search for “bowl feeder” on Hackaday and you’ll get nothing but automated cat and dog feeders. That’s a shame, because as cool as keeping your pets fed is, vibratory bowl feeders are cooler. If you’ve seen even a few episodes of “How It’s Made” you’re likely to have seen these amazing yet simple devices, used to feed and align small parts for automated assembly. They’re mesmerizing to watch, and if you’ve ever wondered how parts like the tiny pins on a header strip are handled, it’s likely a bowl feeder.

[John] at NYC CNC is building a bowl-feeder with Arduino control, and the video below takes us on a tour of the build. Fair warning that the video is heavy on the CNC aspects of milling the collating outfeed ramp, which is to be expected from [John]’s channel. We find CNC fascinating, but if you’re not so inclined, skip ahead to the last three minutes where [John] discusses control. His outfeed ramp has a slot for an optical sensor to count parts. For safety, the Arduino controls the high-draw bowl feeder through an external relay and stops the parts when the required number have been dispensed.

We know, watching someone use a $20,000 CNC milling station might seem overkill for something that could have been 3D printed, but [John] runs a job shop after all and usually takes on big industrial jobs. Or small ones, like these neat color-infill machine badges.

Continue reading “Automating A Bowl Feeder With Arduino”