Open-Source Robot Transforms

Besides Pokémon, there might have been no greater media franchise for a child of the 90s than the Transformers, mysterious robots fighting an intergalactic war but which can inexplicably change into various Earth-based object, like trucks and airplanes. It led to a number of toys which can also change shapes from fighting robots into various ordinary objects as well. And, perhaps in a way of life imitating art, plenty of real-life robots have features one might think were inspired by this franchise like this transforming quadruped robot.

Called the CYOBot, the robot has four articulating arms with a wheel at the end of each. The arms can be placed in a wide array of positions for different operating characteristics, allowing the robot to move in an incredibly diverse way. It’s based on a previous version called the CYOCrawler, using similar articulating arms but with no wheels. The build centers around an ESP32-S3 microcontroller, giving it plenty of compute power for things like machine learning, as well as wireless capabilities for control or access to more computing power.

Both robots are open source and modular as well, allowing a range of people to use and add on to the platform. Another perk here is that most parts are common or 3d printed, making it a fairly low barrier to entry for a platform with so many different configurations and options for expansion and development. If you prefer robots without wheels, though, we’d always recommend looking at Strandbeests for inspiration.

3D Printing RC Car Tires To Go Fast

There’s a bit of a high-speed arms race in the RC world on YouTube these days. [Michael Rectin] is in on the action, and he’s been exploring how to 3D print a decent set of tires to help his RC car reach higher speeds mph.

His first efforts involved experiments with TPU. The tires looked okay, but had very little traction. He later moved on to VarioShore TPU, a filament capable of delivering various properties depending on the printing method. Printing for the softest, and thus grippiest, possible tires, [Michael] whipped up some sporty looking boots for his wheels.

His tires improved over  off-road RC tires in one major way. His design didn’t suffer significant ballooning as the rotational velocity increased. However, the VarioShore material lacked grip compared to off-the-shelf rubber RC tires designed for high-speed use. The commercially-available tires also offered a smoother ride.

[Michael] also demonstrated some neat tricks for high-speed RC driving. He used a modified flight controller to correct the car’s steering in response to perturbations, and put in a scaling method that reduces steering inputs at higher speed. That didn’t entirely stop the carnage though, with some incidents seeing wheels thrown off in big tumbling crashes.

Electric-powered RC cars can go darn quick these days, but you might want to consider jet power if you want to break records. Video after the break.

Continue reading “3D Printing RC Car Tires To Go Fast”

Cart Cruises Abandoned California Rail

Southern California is known for its nearly perfect year-round climate, excellent surf, and extremely high cost of living, but once you get away from the coast things are radically different. Rural California has huge tracts of land run by the Bureau of Land Management (BLM), which is publicly accessible to anyone willing to venture into the deserts. There’s not much in the way of infrastructure out there, but [Ryan] does have a unique way of traveling through it using abandoned railroad lines and this custom rail cart.

The frame of this cart is simple enough, it’s little more than 2×3 framing with a plywood deck. Some extra support is added for the motor mount and for the seating location. It uses slightly longer go-kart axles to accommodate the width of the railroad, and a small six horsepower gas engine with a single gear to power the rear axle. There are no brakes other than the riders’ shoes, and while this all seems straightforward enough the real hack here is [Ryan]’s custom wheels. He found that steel or cast wheels were not particularly comfortable on long journeys so after a few attempts he has come up with a home-built polyurethane wheel which is cast in a mold around a steel go-cart wheel and then trimmed on a lathe.

For pure exploration, there’s almost no better place to go than the American west thanks to all the public BLM land available. In this cart, you can explore long distances using an extremely low-cost method of transportation. We’ve added another video of [Ryan] exploring this area below the break to show the cart being used, too, but if you’d like a more multipurpose vehicle to use on abandoned rail near you, take a look at this bicycle which is converted to operate on the railroad.

Continue reading “Cart Cruises Abandoned California Rail”

Omniwhegs Are Awesome Times Two

What’s the strangest wheel? The omniwheel. Unless you count whegs — “wheel legs” — as wheels. This research paper from Shanghai Technical University explores a mash-up of the two ideas, where the wheels roll as standard omniwheels until a servo on the axle unfurls them into their whegs configuration. The result? OmniWhegs!

The resulting vehicle is a bit of a departure from the original whegs concept, which used compliant mechanisms which passively balanced the force across the legs. Here, the omniwhegs are rigid and actually use a synchronization routine that you can see in the video embedded below.

If you can’t get enough omniwheels, you’re not alone. Here’s a rare three-wheeler, and here’s an omniwheel made of MDF. We haven’t seen enough whegs-based bots, but OutRunner is pretty astounding, and we think deserves a second look.

We’ve also seen wheels that convert to whegs before, but without the omni.  And we don’t know if that one ever made it out of render-of-a-robot phase.

So kudos to the Shanghai team for taking the strangest possible wheels and actually building them!

Continue reading “Omniwhegs Are Awesome Times Two”

DIY Bike Wheels Welded With Rebar

[Liebregts] is working on a trike design, and needed a pair of wheels to go up front. Regular bicycle wheels wouldn’t do, as they’re not designed to work with a single-sided support. They also wanted to be able to mount disc brakes. Thus, they set about building a set of custom wheels to do the job.

The build began with a regular set of 20″ bike wheel rims with all the spokes taken out. A ring of steel rebar welded on the inner perimeter gave the rims more strength. A set of hubs and axles were then fabbed up with a welder and lathe, with provisions for bolting on disc brake components. Lengths of rebar were then welded in as non-adjustable spokes. Next, it was time for a coat of paint. Finally [Liebregts] mounted the tires and brakes, and called the job done.

Obviously, it is possible to buy wheels specifically for trike builds. However, [Liebregts] found it difficult to find exactly what they wanted, particularly where the disc brake option was concerned. The best option was a custom build.  The resulting wheels are obviously much heavier than traditional bike wheels, but they’re also likely a fair bit stronger, too. If you need to weigh down a tarpaulin, for example, these wheels might just do the trick.

We’ve seen some other crazy wheels on trikes before, too! Oh, and who says wheels need to be a full circle, anyway? Creativity will never cease to amaze!

Giant Wheels Make For Exciting Powered Rollerskates

Roller skates are fun and all, but they’re pretty well limited to rolling on relatively smooth surfaces. [Fireball Tool] wanted something a little more rugged, so set about a build of his own. 

The challenge of the design was to build these skates using as many wheelchair parts as possible, including the wheels. Roughly 22″ tall, the wheels have great bearings inside and are designed to run on a single-sided axle support, perfect for the skates. A metal bracket is then used to attach a snowboard boot binding so the wheels can be fitted to the wearer’s feet. Training wheels were fitted to the rear to make it easier for the rider, while a chainsaw engine was pressed into service to provide some welcome propulsive force.

In a short test on a flat workshop floor, the wheels performed ably. The hope is that the large diameter wheels should do better than traditional roller skates would on rough surfaces like grass or dirt. We look forward to seeing that test in action as a comparison to other powered skates we’ve seen. Video after the break.

Continue reading “Giant Wheels Make For Exciting Powered Rollerskates”

3D Printing Omni-Balls For Robot Locomotion

Wheels are all well and good for getting around, but they only tend to rotate about a single axis. Omni-wheels exist, but they’re still a little too pedestrian for [James Bruton]. His latest project involved 3D printing custom omni-balls which roll in all directions. (Video, embedded below.)

The omniball concept comes from earlier work by Osaka University, which also produced a treaded tank-like vehicle by the name OmniCrawler as well. The spherical design, fitted with an axle and casters as well, allows rotation in multiple directions, allowing for a platform fitted with such omni-balls to easily rotate and translate in all directions.

[James] set about creating his own version of the design, which relies on grippy TPU filament for grip pads to give the 3D printed hemispheres some much needed grip. There’s also bearings inside to allow for the relative rotation between the hemispheres and the internal castor, necessary to allow the wheels to move smoothly when sitting on either pole of the hemispheres. Skate bearings were then used to assemble three of the omni-balls onto a single platform, which demonstrated the ability of the balls to roll smoothly in all directions.

While it’s just a demonstration of the basic idea for now, we can imagine these balls being used to great effect for a robot platform that needs to navigate in tight spaces on smooth surfaces with ease. The mechanical complexity of the omni-balls probably negates their effective use in dirtier offroad contexts, however.

We’ve seen [James]’s work before too – such as his compliant leg design for walking robots, and his active gyroscope balancer last week. When does [James] sleep?

Continue reading “3D Printing Omni-Balls For Robot Locomotion”