A pair of hands hold two dark brown boards perpendicular two each other on a light brown benchtop. There are two light brown oval dowels in the end of one board that then project toward holes in the opposite board. Circular holes in the oval dowels are visible perpendicular to the second board, and will match up with holes in the board once pressed in. A cylindrical dowel is laying next to the joint and will be placed into the circular holes once assembled.

Creating A Signature Wood Joint

We really love when makers make their construction techniques evident in an aesthetically-pleasing way, and [Laura Kampf] has created a clever joint that reveals how a piece is made.

[Kampf] is a big fan of using her domino joiner, which is similar to biscuits or dowel joinery, but she didn’t love how it hid the construction of the joint. She first figured out an “off label” use of the joiner by running it from the outside of the joint to show the exposed domino from one end.

Building on the concept to show an interesting contrast on both sides of the joint, she drilled a hole perpendicular the domino and placed a dowel through it, creating a locking joint. The choice looks great once a finish is applied to really accentuate the contrast, and another bonus is that if glue is only applied to the dowel and domino, it becomes trivial to separate the joint if needed by drilling out the dowel.

If you’d like to see some other interesting ways to join wood, how about this laser-cut wedge tenon, soda bottle heat shrink, or this collection of CNC joints.

Continue reading “Creating A Signature Wood Joint”

Bread Proofing Box For The Hungry Hacker

While normally more comfortable with a soldering iron, [LucidScience] recently took a dive into woodworking and hardware store electronics to build a DIY proofing box. It’s a clever design that doubles as furniture, with some cool problem-solving along the way. While it might not be your typical hack, repurposing seedling heat mats and working with insulation makes it a neat project for anyone who likes to tinker. Plus, the whole thing cranks out two loaves of sourdough bread each week!

The setup includes an 8 watt heat mat, typically used for aquariums or seedlings, and a temperature control box, so no complicated wiring is needed. The entire box is insulated with rigid foam, which makes it energy efficient—once the foam was installed, the heat mat only needed to turn on about a quarter of the time. To give it a more polished look, [LucidScience] hid the raw plywood edges with oak trim, and even added an adjustable vent for moisture control. Pretty slick for something built from basic materials and a few tools!

While this proofing box isn’t a groundbreaking electronics project, it shows how even simple hardware can be repurposed for entirely new applications. The combination of woodworking and basic electronics makes it an approachable project for DIYers looking to stretch their skills. Whether you’re into hacking, woodworking, or just love good bread, this build has something for everyone. [LucidScience]’s clear instructions and simple materials make this a great weekend project that can upgrade your baking game.

Continue reading “Bread Proofing Box For The Hungry Hacker”

A DaVinci Screw-Cutting Machine

It’s not news that Leonardo DaVinci was somewhat ahead of his time, and over the centuries many of the creations in his sketchbooks have been created and proved quite functional. The guys from the YouTube channel How To Make Everything have been looking at one such sketch, a screw thread-cutting machine. At first glance, it seems a little flawed. Threads are hard to make by hand, and you can see that this thread-cutting machine needs two identical threads operating as a reference to make it work. However, as the guys demonstrate, you can create threads by hand using simple methods.

Starting with an offset blade mounted on a block with a hole through it, a dowel can be scribed with a starter thread. This can then be worked by hand to cut enough of a groove for the application. They demonstrated that the machine was viable using nothing but wood for construction. A metal blade was mounted, and some preload force was applied to it with a spring. The dowel to be cut was loaded, and the machine ran back and forth enough times to create a very nice-looking screw thread. And once you’ve made two identical threaded dowels, you can use them to upgrade the machine or even build a second. Once you have a repeatable way to make such threads, all kinds of applications become more accessible. Need a bench vice? No problem now!

Whilst the demonstration doesn’t precisely follow the plans laid out by the master inventor, they aren’t all that clear on the cutting tool after all, it’s nice to see people still wanting to build his ideas, and we’ll certainly be following along.

If you like these “from scratch” builds, you’ll like this other one. Leonardo’s work wasn’t just about machines; he was also very interested in science. Here’s a recreation of his demonstration of gravity as a form of acceleration.

Continue reading “A DaVinci Screw-Cutting Machine”

Mobile Coffee Table Uses Legs To Get Around

For getting around on most surfaces, it’s hard to beat the utility of the wheel. Versatile, inexpensive, and able to be made from a wide array of materials has led to this being a cornerstone technology for the past ten thousand years or so. But with that much history it can seem a little bit played out. To change up the locomotion game, you might want to consider using robotic legs instead. That’s what [Giliam] designed into this mobile coffee table which uses custom linkages to move its legs and get itself from place to place around the living room.

Continue reading “Mobile Coffee Table Uses Legs To Get Around”

Homebrew Relay Computer Features Motorized Clock

Before today, we probably would have said that scratch-built relay computers were the sole domain of only the most wizardly of graybeards. But this impressive build sent in by [Will Dana] shows that not only are there young hardware hackers out there that are still bold enough to leave the transistor behind, but that they can help communicate how core computing concepts can be implemented with a bundle of wires and switches.

Created for his YouTube channel WillsBuilds, every component of this computer was built by [Will] himself. Each of the nine relay-packed protoboards inside the machine took hours to solder, and when that was done, he went out to the garage to start cutting the wood that would become the cabinet they all get mounted in.

Continue reading “Homebrew Relay Computer Features Motorized Clock”

Need A Tube? Reach For Plywood!

To be clear, when we are talking about tubes, we mean ordinary cylinders, not vacuum-amplifying elements. With that out of the way, when we need a tube like that, we usually think of PVC or some other kind of pipe product. Or maybe we’ll 3D print what we need. But not [GregO29]. He made his tubes from plywood.

You can make tubes as small as 12 inches in diameter, and [GregO29] made some that were 16 inches. The first step was to make a mold or form. In this case, he elected to make a form that the tube-to-be wraps around. The plywood is thin 2-ply white birch. This makes it easy to shape.

The basic idea is to wrap the wood around the form and glue it. You hold it together with a strap until it dries. Then, you can add more layers until it is the thickness you need.

The real problem turned out to be removing the form once it was done. Why make a tube like this? In [Greg]’s case, he’s building a telescope, which is as good a reason as any to have a tube, we suppose.

We build a lot of things, but we always forget about plywood. It even mixes well with electricity.

VFD Tube Calculator Shows Off Wide Array Of Skills

With all the tools and services available to us these days, it’s hard to narrow down a set of skills that the modern hacker or maker should have. Sure, soldering is a pretty safe bet, and most projects now require at least a little bit of code. But the ability to design 3D printable parts has also become increasingly important, and you could argue that knowledge of PCB design and production is getting up there as well. With home laser cutters on the rise, a little 2D CAD wouldn’t hurt either. So on, and so on.

If you ever wanted an example of the multitude of skills that can go into a modern hardware project, take a look at this gorgeous Vacuum Fluorescent Display (VFD) tube calculator built by [oskar2517]. As fantastic as the final product is, we were particularly impressed with everything it took to get this one over the finish line.

A .7 mm walnut veneer covers the pieced together plywood frame.

It’s got it all: 3D printed parts, a laser cut wooden frame, a custom PCB, and even a bit of old school woodworking. To top it all off, the whole thing has been meticulously documented.

But what’s perhaps most impressive here is that [oskar2517] was approaching most of these techniques for the first time. They had never before worked with IV-12 tubes, designed an enclosure in 3D, had parts laser cut, applied wood veneer, or designed a custom PCB. They did have solid experience writing code in C at least, which did make developing the Arduino firmware a bit easier.

Although they might look outwardly similar, VFD tubes like the IV-12 are easier to work with than Nixie tubes thanks to their lower operating voltage. That said, a look through our archives shows that projects using Nixies outnumber VFD tubes by nearly four to one, so there’s no shortage of folks willing to take on the extra effort for that sweet warm glow.