Hacking When It Counts: GI Ingenuity

For most of us, hacking is a hobby, a pleasant diversion from reality. Yes, a lot of us work on projects which have the potential to change the world – witness the 2015 Hackaday Prize semifinalist list. But in general, almost any of us could walk away from the shop at any time without dire consequences. Indeed, that’s the reason a lot of our work benches are littered with projects started with the best of intentions but left unfinished for lack of funds, lack of interest, or lack of time. We’re free to more or less willingly shelve a project and come back to it whenever we please, or not at all.

But not everyone has that luxury. For some people, hacking is much more than a hobby – it’s a means of survival. Sometimes people are thrown into situations where they have to cobble together a solution to an immediate problem with whatever is at hand, when the penalty for failure is much higher than a cluttered bench and a bruised ego. I’ve already covered one such case, where biohacked insulin saved hundreds of lives in occupied Shanghai in WWII.

In this occasional series I’ll explore historical cases where hacking really counted; cases where lives were saved or improved by a hack performed under desperate conditions.

A Bustle in the Hedgerow

Unsurprisingly, war offers a lot of opportunities for field expedient solutions under dire circumstances, and battlefield conditions might be the most extreme example of hacking when it counts.

In the early days of the Invasion of Normandy during WWII, Allied forces were having a difficult time dealing with the bocage terrain of northern France. A mixture of pasture and woodland, the Normandy bocage was a natural killing field for Allied tanks because the woodlands took the form of hedgerows – earthen dikes topped with thick tangles of brush. Hedgerows separated pastures and kept livestock controlled, but also made things tough on infantry and mechanized cavalry alike. Climbing the steep hedgerows exposed the vulnerable bottom hull of the tanks to enemy fire, and waiting for engineers to demolish the hedgerows with explosive made them sitting ducks for German artillery. The Allied advance was seriously hampered by the hedgerows, and both men and materiel were being winnowed down from fixed German positions chosen specifically to take advantage of the bocage terrain.

curtis cullin
Sgt. Curtis G. Culin (source: Cranford (NJ) Patch)

Enter Sgt. Curtis Grubb Culin III. Sgt. Culin, a tanker himself, was acutely aware of how vulnerable he was in his Sherman M4. The hedgerows were the problem, one apparently known to Allied command prior to the invasion for which no provision had been made. In the tradition of soldiers at the front of every battle throughout history, Sgt. Culin and his fellow tankers had to improvise a solution.

While kicking around ideas, one of the men suggested setting saw teeth on the front of a tank to cut through the hedgerows. He later attributed the comment to “A Tennessee hillbilly named Roberts”, and it was met with general laughter from the group as a crackpot scheme. But Sgt. Culin saw the potential in the idea, and began to develop it into a prototype.

Yanks_of_60th_Infantry_Regiment_advance_into_a_Belgian_town_under_the_protection_of_a_heavy_tank._-_NARA_-_531213
Rhino-equipped tank (source: Wikipedia)

Raw materials for his prototype were not hard to come by. Czech hedgehogs, giant anti-tank barriers made of crossed steel beams, still littered the Normandy beaches. The failed German defenses were harvested with a cutting torch and welded to the underside of a tank to form a series of “tusks” across the hull between the tracks. Equipped with these tusks, the tank could now blast through the tangled roots of the brush-covered earth of the hedgerow dykes.

When demonstrated for General Omar Bradley, he was impressed enough to order them built in quantity for the tanks. Eventually the prototype became an engineered product (dubbed the “Culin Rhino Device”) that was fitted to many tanks before being shipped over from England. Rhino-equipped tanks ripped across Normandy and shredded the German battle plan, which assumed the hedgerows would funnel Allied forces through heavily defended chokepoints.

Without Sgt. Culin’s battlefield hack, and his inspiration by a hillbilly named Roberts whom history otherwise forgets, the invasion of Europe might have taken a very different course. The fact that he did the hack while under fire makes it all the more impressive, and is a perfect example of hacking when it counts.

Know of any more examples of hacking when it counts? Send us a tip for use in a future Hacking When it Counts article.

[Main image of Czech Hedgehog by Jesse CC-BY-SA 3.0]

Retrotechtacular: Stateside Assembly And Launch Of V-2 Rockets

At the end of World War II, the United States engaged in Operation Paperclip to round up German V-2 rockets and their engineers. The destination for these rockets? White Sands Proving Grounds in the New Mexico desert, where they would be launched 100 miles above the Earth for the purpose of high altitude research.

This 1947 War Department Film Bulletin takes a look inside the activities at White Sands. Here, V-2 rockets are assembled from 98% German-made parts constructed before V-E day. The hull of each rocket is lined with glass wool insulation by men without masks. The alcohol and liquid oxygen tanks are connected together, and skins are fitted around them to keep fuel from leaking out. Once the hull is in place around the fuel tanks, the ends are packed with more glass wool. Now the rocket is ready for its propulsion unit.

In the course of operation, alcohol and liquid oxygen are pumped through a series of eighteen jets to the combustion chamber. The centrifugal fuel pump is powered by steam, which is generated separately by the reaction between hydrogen peroxide and sodium permanganate.

A series of antennas are affixed to the rocket’s fins. Instead of explosives, the warhead is packed with instruments to report on high altitude conditions. Prior to launch, the rocket’s tare weight is roughly five tons. It will be filled with nine tons of fuel once it is erected and unclamped.

At the launch site, a gantry crane is used to add the alcohol, the liquid oxygen, and the steam turbine fuels after the controls are wired up. The launch crew assembles in a blockhouse with a 27-foot-thick roof of reinforced concrete and runs through the protocol. Once the rocket has returned to Earth, they track down the pieces using radar, scouting planes, and jeeps to recover the instruments.

Thanks for the tip, [Thomas].

Retrotechtacular is a weekly column featuring hacks, technology, and kitsch from ages of yore. Help keep it fresh by sending in your ideas for future installments.

Retrotechtacular: Using The Jet Stream For Aerial Warfare

Unmanned Aerial Vehicles (UAV) are all the rage these days. But while today’s combative UAV technology is as modern as possible, the idea itself is not a new one. Austria floated bomb-laden balloons at Venice in the middle 1800s. About a hundred years later during WWII, the Japanese used their new-found knowledge of the jet stream to send balloons to the US and Canada.

Each balloon took about four days to reach the western coast of North America. They carried both incendiary and anti-personnel devices as a payload, and included a self-destruct. On the “business end” of the balloons was the battery, the demolition block, and a box containing four aneroid barometers to monitor altitude. In order to keep the balloons within the 8,000 ft. vertical range of the jet stream, they were designed to drop ballast sandbags beginning one day into flight using a system of blow plugs and fuses. In theory, the balloon has made it to North American air space on day four with nothing left hanging but the incendiaries and the central anti-personnel payload.

Although the program was short-lived, the Japanese launched some 9,300 of these fire balloons between November 1944 and April 1945. Several of them didn’t make it to land. Others were shot down or landed in remote areas. Several made the journey just fine, and two even floated all the way to Michigan. Not bad for a rice paper gas bag.

Continue reading “Retrotechtacular: Using The Jet Stream For Aerial Warfare”

Retrotechtacular: WWII Paraset Spy Radio Used By French Resistance

 

[Robert Sumption] a.k.a [W9RAS] takes on the daunting challenge of building a WWII spy radio called the Paraset as the topic of this week’s Retrotechtacular. It was originally a tube based CW (Morse code) transmitter/receiver used by the French underground to communicate with the Allies. Many of these radios were dropped behind enemy lines and could run on European AC or 6 V DC with the added advantage of being able to use most anything for an antenna, including fence wire. These small, low power and highly mobile radios tuned in the 3 to 8 MHz range were instrumental in the resistance. But they still make for a really fun scratch-built radio project.

Continue reading “Retrotechtacular: WWII Paraset Spy Radio Used By French Resistance”

Elder Robots

It’s always nice to show our appreciation for our elders. Today’s young robots may be whippier, snappier, and go-gettier than their forbears but you have to admit that few of them have the moxie to dust themselves off after 45 years and have a walk around town (although it still wouldn’t qualify for a senior’s discount). George, a British humanoid robot made out of a WWII bomber, was resurrected by his inventor after decades in the garage–and all it took was a little bit of oil and some new batteries. Respect.

George is very impressive, but he’s not the oldest robot by any means. Ever-popular Buddha inspired a Japanese robot some 80 years ago that has recently been updated (pics here)–do robots meditate in solid state?

In a similar aesthetic vein to George, Chinese farmer Wu Yulu made a robotic rickshaw driver, one of his many eccentric projects since the 80s.

Here on hackaday we see a lot of modern robotics, but what about a return to the old school? Next time you have a scrap airplane on hand why not weld together a classic robot, and while you’re at it give your regards to old George.

TEMPEST: A Signal Problem

TEMPEST is the covername used by the NSA and other agencies to talk about emissions from computing machinery that can divulge what the equipment is processing. We’ve covered a few projects in the past that specifically intercept EM radiation. TEMPEST for Eliza can transmit via AM using a CRT monitor, and just last Fall a group showed how to monitor USB keyboards remotely. Through the Freedom of Information Act, an interesting article from 1972 has been released. TEMPEST: A Signal Problem (PDF link dead, try Internet Archive version) covers the early history of how this phenomenon was discovered. Uncovered by Bell Labs in WWII, it affected a piece of encryption gear they were supplying to the military. The plaintext could be read over that air and also by monitoring spikes on the powerlines. Their new, heavily shielded and line filtered version of the device was rejected by the military who simply told commanders to monitor a 100 feet around their post to prevent eavesdropping. It’s an interesting read and also covers acoustic monitoring. This is just the US history of TEMPEST though, but from the anecdotes it sounds like their enemies were not just keeping pace but were also better informed.

[via Schneier]