DIY MDF CNC Machine Is Small And Solid

In the world of hobby-level CNC cost and simplicity are usually the name of the game. Using inexpensive and easily found materials makes a big difference in the feasibility of a project. [FreeRider] had built a CNC router before but it was big, flexible and not as accurate as he wanted. He set off to design his own table top router, influenced from other designs found on the ‘net, but also keeping the costs down and ease of build up.

The machine frame is made from 3/4″ MDF and was cut on [FreeRider’s] first router, the JGRO. Notice how all the holes are counterbored for the many bolt heads. It is clear that much attention to detail went into the design of this machine. Aluminum angle act as linear rails on which v-wheel bearings travel. Skate bearings support 5/16″ threaded rod used as lead screws. Lead nuts are tapped HDPE blocks and seem to be doing a satisfactory job with minimal backlash.

[FreeRider] says his new machine is capable of 60 inches per minute travel, double that of his old machine. Since the new machine is stiffer, he’s able to route aluminum and has successfully made some brackets out of 1/8″ plate. He reports the dimensional accurate to be about 0.002-0.003 inches. For more inexpensive MDF-based CNC machines, check out this drawer slide bearing one or this one that uses a drill for a spindle.

PVC CNC Machine Build Results In A Great Learning Experience

Hobby level CNC machines are fun to use and are a great tool to make your projects with. So how does a CNC newb get started? Our opinion is that it’s best to jump right in and get doing. [WTH] wanted to learn more about CNC machines and decided to build his own using parts that were kicking around his house.

As you can see, the frame is made from PVC pipe. In addition, the linear rails are also PVC and the linear bearings….. larger diameter PVC. Scavenged stepper motors and threaded rod are responsible for moving the X and Y axes. Electronics-wise, an Arduino Uno running GRBL and a Protoneer CNC Shield outfitted with StepSticks drive the motors. Here’s a test drawing completed by the machine:


Admittedly, this CNC machine won’t be milling out steel parts any time soon but that is not the point. [WTF] has learned the mechanics, electronics and software associated with CNC machines and that was the point of the project. We are looking forward to seeing how his next machine comes out.

This isn’t the first PVC CNC machine we’ve seen on Hackaday, check out this unorthodox one.

Microscope Camera For Zeroing CNC Machines

After what we’re sure is several dozen screw-ups or at the very least a lot of wasted hours, [Chris] has gotten around to building a very precise microscope camera mount for zeroing out his CNC machine.

If you need to mill a few bits out of a sheet of metal or plastic, it’s important to know exactly where you’re cutting. A CNC machine can take care of the relative positioning, but if you already have half your holes drilled, you also need absolute positioning. This means placing the work piece exactly where you want to cut, or failing that, zeroing the machine to a predefined point on the piece.

[Chris] is accomplishing this with a pen-shaped USB microscope. With a 3D printed mount and a few magnets, this camera can clip right on to the machine, and with the camera interface in Mach3, it’s pretty easy to zero out the mill to within a thousandth of an inch.

There’s a video demo of the camera in action below, but there’s a lot more CNC mods on [Chris]’ website. There’s custom 3D printed vacuum nozzles, and a lot of work on a small desktop Grizzly mill.

Continue reading “Microscope Camera For Zeroing CNC Machines”

Cardboard CNC Machine Boxes Up both a Tool and a Framework

Want to build up a desktop CNC machine without breaking your pocketbook? [James Coleman], [Nadya Peek], and [Ilan Moyer] of MIT Media Labs have cooked up a modular cardboard CNC that gives you the backbone from which you can design your own machine.

The CNC build comprises of design instructions for a single axis linear stage and single axis rotary stage with several ideas on how to combine multiple of these axes together to construct a particular machine. Whether your milling wood, laser-engraving your desk, or pipetting your bacteria samples, the designs [Dropbox] and physical components can be adopted for your end-application.

Perhaps the most interesting aspect of this project is that, at the high level, it is not just a cnc, but a framework known as Gestalt. This architecture enables users to develop their own machine configuration consisting of multiple software nodes linked together with high-level Python Code. Most of the high level computation is organized by a Python library that calls compiled C-code. This high-level framework processes instructions through the desired machine’s kinematics to output commands to the motor controllers. Finally, the top-level interface does away with the archaic GCode with two alternatives: a Python interface consisting of function calls to procedures and a remote interface to make procedure calls through http requests. While the downside of a motion control language is that commands have no standardization; they are, however, far more human-readable, a benefit that plays into the Gestalt Framework’s aim “to be accessible to individuals for personal use.”


In the paper [PDF], [Ilan] expresses the notion of a tool as an impedance-matching device, an instrument that extends the reach of our creativity to bend and morph a broader range of shapes into forms from our imagination. Where our hands fail in their imprecision and weakness, tools bridge this gap. Gestalt and the Cardboard CNC are first steps to creating a framework so that anyone can design and realize their own impedance-matching device, whether they’re weaving steel cables or carving wood.

The folks at MIT Media Labs a familiar heavy-hitters in this field of low-cost machinery, especially the kind that fit in a suitcase. We’re thrilled to see a build that reaches out directly to the community.

via []

CNC Milling Photos with a Halftone Generator

Looking for an awesome way to mill out a photo or graphic? Check out [Matt Venn]’s halftone gcode generator which creates halftone CNC toolpaths from any image file. We’ve run across some halftone generators before, but [Matt]’s generator has some interesting features and makes for some pretty unique output.

[Matt] initially wrote a simple command line program in Python, but just rewrote his script with a more user-friendly UI that renders a preview of the output as you change options.  The UI lets you change parameters like drill depth, number of lines, and the step size to tweak the output. It even has an option to map the halftone points along a sine wave which makes an interesting effect as shown in the image above.

[Matt]’s program generates standard gcode that you can use to run your CNC machine. [Matt] recommends milling a material with layers of different colors, but you can always mill a solid material and fill the routed areas with paint or dye instead. Want to grab the script or check out the source code? Head over to [Matt]’s GitHub repository.

Thanks for the tip, [Keith O].

CNC Plotter Uses Only the Good DVD Drive Parts

It wasn’t that long ago that wanting to own your own 3D printer meant learning as much as you possibly could about CNC machines and then boostrapping your first printer. Now you can borrow time on one pretty easily, and somewhat affordably buy your own. If you take either of these routes you don’t need to know much about CNC, but why not use the tool to learn? This is what [Wootin24] did when building a 3D printed plotter with DVD drive parts.

Plotters made from scrapped floppy, optical drives, and printers are a popular hand, and well worth a weekend of your time. This one, however, is quite a bit different. [Wootin24] used the drives to source just the important parts for CNC precision: the rods, motors, motors, and bearings. The difference is that he designed and 3D printed his own mounting brackets rather than making do with what the optical drive parts are attached to.

This guide focuses on the gantries and the mechanics that drive them… it’s up to you to supply the motor drivers and electrical side of things. He suggests RAMPS but admins he used a simple motor driver and Arduino since they were handy.

First CNC Project Results in Coffee Table of Catan

[Christian Finklea] was inspired by a glow in the dark table, and decided to try his hand at making his own… and it’s absolutely fantastic.

He designed the table using SketchUp Make, and overlaid the continents of our planet on a grid of hexagons — Though it looks like he left Antarctica out of the mix — poor Antarctica! Why hexagons you might ask? Well, his CNC machine isn’t that big, so he had to choose a smaller work piece size in order to make the table. Kind of gives off a Settlers of Catan vibe too…

Once he had all the intricate hexagons milled out, he began assembling the table. Lots of wood glue later the table started looking like a table. Now here’s the fun part — making it glow.

Using what looks like a kind of glow-in-the-dark epoxy, [Christian] filled in all of the country cutouts and waited for it to cure. Bit of sanding later, some more lacquer, and boom — he has an awesome coffee table.

Now if only he had stuck some LEDs in there too like one of these RGB coffee tables we’ve seen — Then you could also play Risk anytime!