Cheap Musical Tesla Coil Put Through Its Paces

Once upon a time, musical Tesla coils were something you primarily saw at high-voltage hobby meets. They’ve become more popular in recent years, and now you can even buy cheap examples online. [mircemk] decided to buy one and gave it a whirl.

The device comes with a power supply capable of delivering 2 amps at 48 V.  It’s a solid-state design, relying on SMD MOSFETs to generate high-voltage, high-frequency output that makes the sparks we all know and love. The pancake coil is key to the design, and is made using a trace on the PCB — a neat technique compared to making one with a laborious winding operation.

The coil can be used to simply generate sparks, or it can be modulated musically. In this mode of operation, it’s intended to be driven by square wave audio for simplicity’s sake. As seen in [mircemk]’s video, the sound quality is pretty decent for a cheap device, and the Super Mario theme is readily recognizable. As a guide, he also demonstrates how to drive the device using an Arduino set up for square wave audio output.

If you prefer to build your own singing Tesla coil, you can go that route instead. Or, you could buy one of these and hack it, and drop us a line with what you come up with! Similar devices are all over the ‘net. Continue reading “Cheap Musical Tesla Coil Put Through Its Paces”

Build Your Own Class-E Musical Tesla Coil

We’ve all seen a million videos online with singing Tesla coils doing their thang. [Zach Armstrong] wasn’t content to just watch, though. He went out and built one himself! Even better, he’s built a guide for the rest of us, too!

His guide concerns the construction of a Class-E solid state Tesla coil. These are “underrated” in his opinion, as they’re simple, cheap, and incredibly efficient. Some say up to 95% efficient, in fact! It’s not something most Tesla coil fans are concerned with, but it’s nice to save the environment while making fun happy sparks, after all.

[Zach]’s guide doesn’t just slap down a schematic and call it good. He explains the theory behind it, and the unique features too. He uses an adjustable Schmitt trigger oscillator for the build, and he’s naturally given it an audio modulation capability because that’s a good laugh, too.

If you’ve ever wanted to convince you’re friends you’re incredibly smart and science-y, you can’t go wrong with a singing Tesla coil. This beats out Jacob’s ladder and most other plasma experiments for sheer mad scientist cred.

Have fun out there! Video after the break.

Continue reading “Build Your Own Class-E Musical Tesla Coil”

A Single Transistor Solid State Tesla Coil

Tesla coils are one of those builds that capture the interest of almost anybody passing by. For the naïve constructor, they look simple enough, but they can be finicky beasts—beasts that can bite if not treated with respect. [Mirko Pavleski] has some experience with them and shares it with us over on Hackaday.io. One of the first big improvements of this build style is the shift from the originally used spark gap commutator to that of a direct AC drive via a MOSFET oscillator. This improves the primary drive power for its size and eliminates that noisy spark gap. That’s one less source of broadband RF noise and the audible racket these produce.

A hand holding a secondary coil for a Tesla coil build
You can buy ready-wound secondary coils from the usual CN suppliers

The primary side of a Tesla coil is usually a handful of turns of thick wire to handle the current without melting. This build runs at two or three amps, giving a primary power of around 150 Watts. However, this is quite a small unit; with larger ones, the power is much higher, and the resulting discharge sparks much longer. On the secondary side, the air-coupled coil is formed from 520 turns of much thinner wire since it doesn’t need to convey so much current. That’s the thing with transformers with large turns ratios — the secondary voltage will be much higher, and the current will be correspondingly much lower. The idea with Tesla coils is that the secondary circuit forms a resonant circuit with the ‘top load’, usually some hollow metal can. This forms an LC circuit with a corresponding resonant frequency dependent on the secondary inductance values, the object’s capacitance and anything else connected. The primary circuit is designed to resonate at this same frequency to give maximum power coupling across the air gap. Changing either circuit can spoil this balance unless there is a feedback circuit to keep it in check. This could be with a sense coil, a local antenna or something more direct, like in this case.

To ensure the primary circuit doesn’t melt, it needs to be able to drive a reasonable current at this frequency, often in the low MHz range. This leads to a common difficulty: ensuring the switching transistor and rectifying diode are fast enough at the required current level with enough margin. [Mirko] points out several components that can achieve the operating frequency of around 1.7 MHz, which his top load configuration indicates.

For a bit more info on building these fascinating devices, you could check out our earlier coverage, like this useful guide. Of course, simple can be best. How about a design with just three components?

Continue reading “A Single Transistor Solid State Tesla Coil”

Another Tesla Coil Starts

Everyone interested in electronics should build at least one Tesla coil. But be careful. Sure, the high voltage can be dangerous, but the urge to build lots of coils is even worse. [Learnelectronics] shows how to build a slayer exciter using a 3D-printed core, and lots of wire of course. You can see the coil, an explanation of the design, and a comparison to a cheap kit in the video below.

Of course, you hear about Tesla coils, but it is really more of a Tesla transformer. The 3D-printed core holds the many turns of the secondary coil. The larger Tesla coil, amusingly, upset the camera which made it hard to get close-up shots.

Continue reading “Another Tesla Coil Starts”

Getting Root Access On A Tesla

A growing number of manufacturers are locking perfectly good hardware behind arbitrary software restrictions. While this ought to be a bigger controversy, people seem to keep paying for things like printers with ink subscriptions, cameras with features disabled in firmware, or routers with speed restrictions, ensuring that this practice continues. Perhaps the most blatant is car manufacturers that lock features such as heated seats or even performance upgrades in the hopes of securing a higher price for their vehicles. This might be a thing of the past for Teslas, whose software has been recently unlocked by Berlin IT researchers.

Researchers from Technische Universität Berlin were able to unlock Tesla’s driving assistant by inducing a two-microsecond voltage drop on the processor which allowed root access to the Autopilot software. Referring to this as “Elon mode” since it drops the requirement for the driver to keep their hands on the steering wheel, they were able to access the full self-driving mode allowing autonomous driving without driver input. Although this might be a bad idea based on the performance of “full self-driving” in the real world, the hack at least demonstrates a functional attack point and similar methods could provide free access to other premium features.

While the attack requires physical access to the vehicle’s computer and a well-equipped workbench, in the short term this method might allow for owners of vehicles to use hardware they own however they would like, and in the long term perhaps may make strides towards convincing manufacturers that “features as a service” isn’t a profitable strategy. Perhaps that’s optimistic, but at least for Teslas it’s been shown that they’re not exactly the most secured system on four wheels.

Tesla’s Plug Moves Another Step Closer To Dominance

Charging an EV currently means making sure you find a station with the right plug. SAE International has now published what could be the end to the mishmash of standards in North America with the J3400 North American Charging Standard.

The SAE J3400TM North American Charging Standard (NACS) Electric Vehicle Coupler Technical Information Report (TIR), which just rolls off the tongue, details the standard formerly only available on Tesla vehicles. We previously talked about the avalanche of support from other automakers this year for the connector, and now that the independent SAE standard has come through, the only major holdout is Stellantis.

Among the advantages of the NACS standard over the Combined Charging System (CCS) or CHAdeMO is a smaller number of conductors given the plug’s ability to carry DC or AC over the same wires. Another benefit is the standard using 277 V which means that three separate Level 2 chargers can be placed on a single 3-phase commercial line with no additional step down required. Street parkers can also rejoice, as the standard includes provisions for lampost-based charger installations with a charge receptacle plug instead of the attached cable required by J1772 which leads to maintenance, clutter, and ADA concerns.

Now that J3400/NACS is no longer under the purview of a single company, the Federal Highway Administration has announced that it will be looking into amending the requirements for federal charger installation subsidies. Current rules require CCS plugs be part of the installation to qualify for funds from the Bipartisan Infrastructure Bill.

If you want to see how to spice up charging an EV at home, how about this charging robot or maybe try fast charging an e-bike from an electric car plug?

Tesla Claims To Have Open Sourced The Roadster

In an interesting step for anyone who follows electric car technology, the automaker Tesla has released a trove of information about its first-generation Roadster car into the public domain. The documents involved include service manuals, circuit diagrams, and technical details, and Elon Musk himself Tweeted posted on X that “All design & engineering of the original @Tesla Roadster is now fully open source.

We like the idea and there’s plenty of interesting stuff there, but we can’t find an open-source licence anywhere and we have to take issue with his “Whatever we have, you now have” comment. What we have is useful maintenance information and presents a valuable window into 2010’s cutting edge of electric vehicles, but if it’s everything they have then something must have gone very wrong in the Tesla archives. It’s possible someone might take a Lotus Elise and produce something close to a Roadster replica with this info, but it’s by no means enough to make a car from. Instead we’re guessing it may be a prelude to reducing support for what is a low-production car from over a decade ago.

When it comes to electric vehicle manufacturers open-sourcing their older models we already have a model in the form of Renault’s open-source version of their Twizy runabout. This is a far more credible set of information that can be used to make a fully open-source version of the car, rather than a set of workshop manuals.

Tesla Roadster, cytech, CC BY 2.0.