Living High-Altitude Balloon

High-altitude balloons are used to perform experiments in “near space” at 60,000-120,000 ft. (18000-36000m). However, conditions at such altitude are not particularly friendly and balloons have to compete with ultraviolet radiation, bad weather and the troubles of long distance communication. The trick is to send up a live entity to make repairs as needed. A group of students from Stanford University and Brown University repurposed nature in their solution. Enter Bioballoon: a living high-altitude research balloon.

Instead of using inorganic materials, the Stanford-Brown International Genetically Engineered Machine (iGEM) team designed microbes that grow the components required to build various tools and structures with the hope of making sustained space research feasible. Being made of living material, Bioballoon can be grown and re-grown with the same bacteria, lowering the cost of manufacturing and improving repeatability.

Bioballoon is engineered to be modular, with different strains of bacteria satisfying different requirements. One strain of bacteria has been modified to produce hydrogen in order to inflate the balloon while the balloon itself is made of a natural Kevlar-latex mix created by other cells. Additionally, the team is using Melanin, the molecule responsible for skin color and our personal UV protection to introduce native UV resistance into the balloon’s structure. And, while the team won’t be deploying a glider, they’ve designed biological thermometers and small molecule sensors that can be grown on the balloon’s surface. They don’t have any logging functionality yet, but these cellular hacks could amalgamate as a novel scientific instrument: cheap, light and durable.

Living things too organic for your taste? Don’t worry, we’ve got some balloons that won’t grow on you.

Continue reading “Living High-Altitude Balloon”

Graphene? Soybean!

True graphene is a one-atom thick layer of carbon. It’s incredibly conductive, transparent, and of course thin. It’s one of those materials that, if it were only cheaper, would be used in everything from batteries to water filtration. Researchers from CSIRO in Australia have found a novel, dirt-cheap, and simple way to make graphene, and it’s hacker-friendly, for certain values of hacker.

The method is to take a sheet of polycrystalline nickel foil, spread a thin layer of soybean oil on it, and heat it up to 800° C for three minutes. It’s cooled off, slid off the foil, and it’s done. While 800° is a lot hotter than a standard toaster oven, their setup isn’t really all that much different. Notably lacking are things like esoteric gasses, partial vacuums, and the like. The nickel foil has some kind of catalytic role in the process — you should read the original if you’re more of a chemist than we are. Continue reading “Graphene? Soybean!”

Microfluidics “Frogger” is a Game Changer for DIY Biology

xgy5x3

See those blue and green dots in the GIF? Those aren’t pixels on an LCD display. Those are actual drops of liquid moving across a special PCB. The fact that the droplets are being manipulated to play a microfluidics game of “Frogger” only makes OpenDrop v 2.0 even cooler.

Lab biology is mainly an exercise in liquid handling – transferring a little of solution X into some of solution Y with a pipette. Manual pipetting is tedious, error prone, and very low throughput, but automated liquid handling workstations run into the hundreds of thousands of dollars. This makes [Urs Gaudenz]’s “OpenDrop” microfluidics project a potential game changer for the nascent biohacking movement by offering cheap and easy desktop liquid handling.

Details are scarce on the OpenDrop website as to exactly how this works, but diving into the literature cited reveals that the pads on the PCB are driven to high voltages to attract the droplets. The PCB itself is covered with a hydrophobic film – Saran wrap that has been treated with either peanut oil or Rain-X. Moving the droplets is a simple matter of controlling which pads are charged. Splitting drops is possible, as is combining them – witness the “frog” getting run over by the blue car.

There is a lot of cool work being done in microfluidics, and we’re looking forward to see what comes out of this open effort. We’ve covered other open source efforts in microfluidics before, but this one seems so approachable that it’s sure to capture someone’s imagination.

Continue reading “Microfluidics “Frogger” is a Game Changer for DIY Biology”

Lost PLA Casting Brings out the Beauty of Macromolecules

Biochemistry texts are loaded with images of the proteins, nucleic acids, and other biopolymers that make up life. Depictions of the 3D structure of macromolecules based on crystallography and models of their most favorable thermodynamic conformations are important tools. And some are just plain beautiful, which is why artist [Mike Tyka] has taken to using lost-PLA casting to create sculptures of macromolecules from bronze, copper, and glass.

We normally don’t cover strictly artistic projects here at Hackaday, although we do make exceptions, such as when the art makes a commentary on technology’s place in society. In [Mike]’s case, not only is his art beautiful and dripping with nerd street cred, but his techniques can be translated to other less artsy projects.

kcsa_5_bigFor “Tears”, his sculpture of the enzyme lysozyme shown in the banner image, [Mike] started with crystallographic data that pinpoints every peptide residue in the protein. A model is created for the 3D printer, with careful attention paid to how the finished print can be split apart to allow casting. Clear PLA filament is used for the positive because it burns out of the mold better than colored plastic. The prints are solvent smoothed, sprues and air vents added, and the positive is coated with a plaster mix appropriate for the sculpture medium before the plastic is melted out and the mold is ready for casting.

[Mike]’s sculpture page is well worth a look even if you have no interest in macromolecules or casting techniques. And if you ever think you’ll want to start lost-PLA casting, be sure to look over his build logs for plenty of tips and tricks. “Tears” is executed in bronze and glass, and [Mike]’s description is full of advice on how to handle casting such vastly different media.

Thanks to [Dave Z.] for the tip.

Extracting Sounds With Acid And UV

Toaplan was a Japanese video game developer in the 80s and early 90s, most famous for Zero Wing, the source of the ancient ‘All Your Base’ meme. Memeology has come a long way since the Something Awful forums and a pre-Google Internet, but MAME hasn’t. Despite the completionist nature of MAME aficionados, there are still four Toaplan games with no sound in the current version of MAME.

The sound files for these games is something of a holy grail for connoisseurs of old arcade games, and efforts to extract these sounds have been fruitless for three decades. Now, finally, these sounds have been released with the help of sulfuric acid and microscopes.

The sounds for Fire SharkVimanaTeki Paki, and Ghox were stored on their respective arcade boards inside the ROM for a microcontroller, separate from the actual game ROM. Since the fuse bits of this microcontroller were set, the only way to extract the data was decapsulation. This messy and precise work was done by CAPS0ff, who melted away the epoxy coating of the chip, revealing the microcontroller core.

Even without a microscope, the quarry of this hunt was plainly visible, but there was still no way to read out the data. The built-in read prevention bit was set, and the only way to clear that was to un-set a fuse. This was done by masking everything on the chip except the suspected fuse, putting it under UV, and checking if the fuse switched itself to an unburnt state.

The data extraction worked, and now the MAME project has the sound data for games that would have otherwise been forgotten to time. A great success, even if the games are generic top-down shooters.

Flexible, Sensitive Sensors from Silly Putty and Graphene

Everyone’s favorite viscoelastic non-Newtonian fluid has a new use, besides bouncing, stretching, and getting caught in your kid’s hair. Yes, it’s Silly Putty, and when mixed with graphene it turns out to make a dandy force sensor.

To be clear, [Jonathan Coleman] and his colleagues at Trinity College in Dublin aren’t buying the familiar plastic eggs from the local toy store for their experiments. They’re making they’re own silicone polymers, but their methods (listed in this paywalled article from the journal Science) are actually easy to replicate. They just mix silicone oil, or polydimethylsiloxane (PDMS), with boric acid, and apply a little heat. The boron compound cross-links the PDMS and makes a substance very similar to the bouncy putty. The lab also synthesizes its own graphene by sonicating graphite in a solvent and isolating the graphene with centrifugation and filtration; that might be a little hard for the home gamer to accomplish, but we’ve covered a DIY synthesis before, so it should be possible.

With the raw materials in hand, it’s a simple matter of mixing and kneading, and you’ve got a flexible, stretchable sensor. [Coleman] et al report using sensors fashioned from the mixture to detect the pulse in the carotid artery and even watch the footsteps of a spider. It looks like fun stuff to play with, and we can see tons of applications for flexible, inert strain sensors like these.

Continue reading “Flexible, Sensitive Sensors from Silly Putty and Graphene”

Thermoelectric Paint Opens Prospect Of Easier Energy Harvesting

We will all be used to the thermoelectric effect in our electronic devices. The property of a junction of dissimilar conductors to either generate electricity from a difference in temperature (the Seebeck effect), or heating or cooling the junction (the Peltier effect). Every time we use a thermocouple or one of those mini beer fridges, we’re taking advantage of it.

Practical commercial thermoelectric arrays take the form of a grid of semiconductor junctions wired in series, with a cold side and a hot side. For a Peltier array the cold side drops in temperature and the hot side rises in response to applied electric current, while for a Seebeck array a current is generated in response to temperature difference between the two sides. They have several disadvantages though; they are not cheap, they are of a limited size, they can only be attached to flat surfaces, and they are only as good as their thermal bond can be made.

Researchers in Korea have produced an interesting development in this field that may offer significant improvements over the modules, they have published a paper describing a thermoelectric compound which can be painted on to a surface. The paint contains particles of bismuth telluride (Bi2Te3), and an energy density of up to 4mW per square centimetre is claimed.

Continue reading “Thermoelectric Paint Opens Prospect Of Easier Energy Harvesting”