Arduino Gives Your Toilet Options

toilet water saver

With the severe drought going on in California with no end in sight, [TVMiller] decided he could put an Arduino and a toilet together to try and save at least a few gallons of water per day. The invention fills a toilet to the minimum level, saving around two gallons per day for the average “user”.

A typical toilet functions by using gravity and moving water to create a vacuum, sucking the waste down and out of the toilet. As long as there is nothing, uh, solid in the bowl, the toilet will be able to function on the reduced amount of water. The Arduino cuts the flow of water off before the toilet fills up the entire way.

In the event that anyone -ahem- needs the toilet’s full capacity, there is a button connected to the Arduino that fills the reservoir to capacity. [TVMiller] notes that if 1,825 hackers installed this device on their toilets, we could save a million gallons of water per year and be well on our way to saving the planet.

The project site is full of more information and puns for your viewing pleasure. We might suggest that the “2” button would be very easy to integrate with the toilet terror level indicator as well.

 

Electricity Monitoring with a Light-to-Voltage Sensor, MQTT and some Duct Tape

Bh6mcz_CUAAuI3V

When it comes down to energy management, having real-time data is key. But rarely is up-to-the-minute kilowatt hour information given out freely by a Utility company, which makes it extremely hard to adjust spending habits during the billing cycle. So when we heard about [Jon]’s project to translate light signals radiating out of his meter, we had to check it out.

From the looks of it, his hardware configuration is relatively simple. All it uses is a TSL261 Light-to-Voltage sensor connected to an Arduino with an Ethernet shield attached. The sensor is then taped above the meter’s flashing LED, which flickers whenever a pulse is sent out indicating every time a watt of electricity is used. His configuration is specific to the type of meter that was installed by his Utility, and there is no guarantee that all the meters deployed by that company are the same. But it is a good start towards a better energy monitoring solution.

And the entire process is documented on [Jon]’s website, allowing for more energy-curious people to see what it took to get it all hooked up. In it, he describes how to get started with MQTT, which is a machine-to-machine (M2M)/”Internet of Things” connectivity protocol, to produce a real-time graph, streaming data in from a live feed.

Continue reading “Electricity Monitoring with a Light-to-Voltage Sensor, MQTT and some Duct Tape”

A Cheap DIY Smoke Detector that Can Save Lives

2014-07-19-16.33.53 A faulty wire, a discarded burning cigarette, or a left-on curling iron can trigger sparks of fire to engulf everything nearby until all that’s left is brittle mounds of smoldering ash. Which is why smoke detectors are so important. They are life saving devices that can wake people up sleeping inside, well before the silent, but deadly carbon monoxide starts to kick in. But what happens if no one is home, and the alarm begins to blare? The place burns down into the ground without the owners knowing.

So when [Martin] purchased a battery-powered smoke detector and rigged it up to notify him exactly when the piezo siren is activated, the evolution of the automatic fire alarm continued into the realm of wireless internet-connected things.

His home automation system (a Raspberry Pi running Node-Red) links to a Funky ATTiny84-based sensor and transmits the data wirelessly, redirecting the information to his phone. SMS messages can be sent, as well as emails and pushbullet notifications. Once the piezo siren starts to sing, the system alerts him that smoke has been detected and that he should check on it as soon as possible.

The electronics fit perfectly inside the case waiting for any smoky disturbance in the room to light up. And what makes this project even better, besides the life saving capabilities and the instant push notifications, is that it was hooked up for the cheap. No need to buy a brand-new, expensive Nest protect, when all it takes it a sensor or two and a Raspberry Pi to hack the fire alarm that already sits in the house.

This video coming up after the break shows how simple it is to make. Continue reading “A Cheap DIY Smoke Detector that Can Save Lives”

Zero-Dollar AC System Looks Funny But Works Well

Summer is here and with summer comes hot days. You probably know that us humans get uncomfortable if the temperature rises too much. Sure, we could turn on the loud and inefficient window AC unit and try to stay mildly comfortable while the electric company pick-pockets pennies from our change purse, but what is the fun in that? [Fran] had a better idea.

He noticed that his basement was always in the upper 50°F range regardless of how hot it was outside. He wanted the cool basement air to reside upstairs in the living area. After thinking long and hard about it he decided that a box fan and two long, skinny cardboard boxes assembled together would be enough to move the required amount of air. Both the fan and boxes were kicking around the house so was no cost and no risk to try this out. Continue reading “Zero-Dollar AC System Looks Funny But Works Well”

THP Entry: Cut Energy Consumption by 30 percent with this WiFi XBee Setup

5277901405891974757

Let’s be honest. Paying electricity bills sucks. The amount paid is always too much, and the temperatures in the building are rarely set at a comfortable level. But now, with the help of this DIY Climate Control system, power-users can finally rejoice knowing that the heating and cooling process of their home (or commercial space) can be easily controlled through the utilization of an XBee Remote Kit and a process called zoning.

The team behind the project is [Doug], [Benjamin] and [Lucas]. They hope to solve the inconsistent temperature problems, which are caused by a moving sun, by open-sourcing their work into the community.

Their XBee system runs on a mesh network making it a perfect tool for sensing and communicating which areas in the house are too hot or too cold. Once the data is collected, XBee modules route the information wirelessly to each other until it reaches a central Arduino gatekeeper; which then decides if it wants to heat, ventilate, or air condition the room.

Not to mention all the added benefits posted below:

Continue reading “THP Entry: Cut Energy Consumption by 30 percent with this WiFi XBee Setup”

Long Range Wireless Sensors for the Home-Area-Network

7785441404784533190 In the near future, we will all reside in households that contain hundreds of little devices intertwingled together with an easily connectable and controllable network of sensors. For years, projects have been appearing all around the world, like this wireless sensor system that anyone can build.

[Eric] hopes his work will help bring the truly expansive Home-Area-Network (HAN) into fruition by letting developers build cheap, battery-powered, long-range wireless sensors. His method integrates with the pluggable OSGI architecture and home automation platform openHAB along with using an Arduino as the lower power, sensor node that is capable of utilizing many types of cheap sensors found online.

[Eric]’s tutorial depicts a few examples of the possibilities of these open-source platforms. For instance, he shows what he calls a ‘Mailbox Sentinel’ which is a battery-powered mail monitoring device that uses a Raspberry Pi to play the infamous, and ancient AOL sound bite “you’ve got mail.” It will also send an email once the postman cometh.

In addition, he lists other ideas such as a baby monitoring sentinel, a washer/dryer notification system, water leak detectors, and security implementations that blast a loud alarm if someone tries to break in. All of this potential for just around $20.

The key to making this project work, as [Eric] states, is the MQTT binding that ties together the Ardiuno and openHAB platform. This allows for simple messages to be sent over the Ethernet connection which is often found in IoT devices.

So all you developers out there go home and start thinking of what could be connected next! Because with this system, all you need is a couple of ten-spots and an internet plug, and you have yourself a strong foundation to build on top of. The rest is up to you.

This open, connected device is [Eric’s] entry for The Hackaday Prize. You can see his video demo after the break. We hope this inspires you to submit your own project to the contest!

Continue reading “Long Range Wireless Sensors for the Home-Area-Network”

Hamtramck Disneyland

Mike posing near the central part of the build... lots to see here!

With a few hours of down time I convinced [Caleb Kraft] to go to Hamtramck Disneyland with me. You’ve heard of it, right? I certainly hadn’t. I sounded like gibberish when [Chris Thompson] suggested it to us. Just a 10 minute drive away from Recycle Here! (where the Red Bull Creation is being held).

Without a street address we never would have found it. The spectacle is simply a house on a normal looking street in Hamtramck, Michigan. We were just a few doors down, creeping down the street, before we spied a flash of color between the houses. Swinging around the corner and into the alley this marvel opened up to us. The work of [Dmytro Szylak] started about twenty years ago. He built and built and built for years, a produced some backyard art that impossible to view without beaming with joy. You won’t spend much time there, but seeing for yourself is worth a few minutes side trip. For those that will never have a chance, here are the pictures I snapped.

Continue reading “Hamtramck Disneyland”