Breathe Easy with a Laser Cutter Air Filter

A laser cutter is a great tool to have in the shop, but like other CNC machines it can make a lousy neighbor. Vaporizing your stock means you end up breathing stuff you might rather not. If you’re going to be around these fumes all day, you’ll want good fume extraction, and you might just consider a DIY fume and particulate filter to polish the exhausted air.

15203365_644939182347358_619032134291602214_nWhile there’s no build log per se, [ZbLab]’s Facebook page has a gallery of photos that show the design and build in enough detail to get the gist. The main element of the filter is 25 kg of activated charcoal to trap the volatile organic compounds in the laser exhaust. The charcoal is packed into an IKEA garbage can around a prefilter made from a canister-style automotive air cleaner – [ZbLab] uses a Filtron filter that crosses to the more commonly available Fram CA3281. Another air cleaner element (Fram CA3333) makes sure no loose charcoal dust is expelled from the filter. The frame is built of birch ply and the plumbing is simple PVC. With a 125mm inlet it looks like this filter can really breathe, and it would easily scale up or down in size according to your needs.

No laser cutter in your shop to justify this filter, you say? Why not build one? Or, if you do any soldering, this downdraft fume extractor is a good way to clear the air.

Drop-in Laser Cutter Alignment Beam Works like a Charm

Every laser cutter enthusiast eventually pops the question: how on earth do I align an invisible beam that’s more-than-happy to zap my eyeballs, not to mention torch everything else in its path? We hate to admit it, but laser cutter beam alignment is no easy task. To greatly assist in this endeavor, though, some folks tend to mix a red diode laser into the path of the beam. Others temporarily fixture that diode laser directly in the beam path and then remove it once aligned.

One deviant has taken diode laser mixing to the next level! [Travis Reese] has added a servo-driven diode laser that dynamically drops into the path of the laser tube when the lid pops up, and then tilts comfortably out of the laser path when the lid closes again.
Continue reading “Drop-in Laser Cutter Alignment Beam Works like a Charm”

90+ Videos Take you from Laser Chump to Laser Champ

Few of us document the progression of our side projects. For those who do, those docs have the chance at becoming a tome of insight, a spaceman’s “mission log” found on a faraway planet that can tell us how to tame an otherwise cruel and hostile world. With the arrival of the RDWorks Learning Lab Series, Chinese laser cutters have finally received the treatment of a thorough in-depth guide to bringing them into professional working order.

In two series, totalling just over 90 videos (and counting!) retired sheet-metal machinist [Russ] takes us on a grand tour of retrofitting, characterizing, and getting the most out of your recent Chinese laser cutter purchase.

Curious about laser physics? Look no further than part 2. Wonder how lens size affects power output? Have a go at part 39. Need a supplemental video for beam alignment? Check out part 31. For every undocumented quirk about these machines, [Russ] approaches each problem with the analytic discipline of a data-driven scientist, measuring and characterizing each quirk with his suite of tools and then engineering a solution to that quirk. In some cases, these are just minor screw adjustments. In other cases, [Russ] shows us his mechanical wizardry with a custom hardware solution (also usually laser cut). [Russ] also brings us the technical insight of a seasoned machinist, implementing classic machinist solutions like a pin table to produce parts that have a clean edge that doesn’t suffer from scatter laser marks from cutting parts on a conventional honeycomb bed.

Solid build logs are gems that are hard to come by, and [Russ’s] Chinese laser cutter introduction shines out as a reference that will stand the test of time. Don’t have the space for a laser cutter? For the micromachinists, have a look at The Guerrilla Guide to CNC Machining, Mold Making, and Resin Casting.

Continue reading “90+ Videos Take you from Laser Chump to Laser Champ”

Cheap Dual Mirror Laser Projector

[Stanley] wanted to make a laser projector but all he could find online were one’s using expensive galvanometer scanners. So instead he came up with his own solution that is to be admired for its simplicity and its adaptation of what he could find.

At its heart is an Arduino Uno and an Adafruit Motor Shield v2. The green laser is turned on and off by the Arduino through a transistor. But the part that makes this really a fun machine to watch at work are the two stepper motors and two mirrors that reflect the laser in the X and Y directions. The mirrors are rectangles cut from a hard disk platter, which if you’ve ever seen one, is very reflective. The servos tilt the mirrors at high speed, fast enough to make the resulting projection on the wall appear almost a solid shape, depending on the image.

He’s even written a Windows application (in C#) for remotely controlling the projector through bluetooth. From its interface you can select from around sixteen predefined shapes, including a what looks like a cat head, a heart, a person and various geometric objects and line configurations.

There is a sort of curving of the lines wherever the image consists of two lines forming an angle, as if the steppers are having trouble with momentum, but that’s probably to be expected given that they’re steppers controlling relatively large mirrors. Or maybe it’s due to twist in the connection between motor shaft and mirror? Check out the video after the break and let us know what you think.

Continue reading “Cheap Dual Mirror Laser Projector”

A Laser Effect Projector Built with Safety in Mind

There’s just something about wielding a laser pointer on a dark, foggy night. Watching the beam cut through the mist is fun – makes you feel a little Jedi-esque. If you can’t get enough of lasers and mist, you might want to check out this DIY “laser sky” effect projector.

The laser sky effect will probably remind you of other sci-fi movies – think of the “egg scene” from Alien. The effect is achieved by sweeping a laser beam in a plane through swirling smoke or mist. The laser highlights a cross section of the otherwise hidden air currents and makes for some trippy displays. The working principle of [Chris Guichet]’s projector is simplicity itself – an octagonal mirror spun by an old brushless fan motor and a laser pointer. But after a quick proof of concept build, he added the extras that took this from prototype to product. The little laser pointer was replaced with a 200mW laser module, the hexagonal mirror mount and case were 3D printed, and the mirrors were painstakingly aligned so the laser sweeps out a plane. An Arduino was added to control the motor and provide safety interlocks to make sure the laser fires only when the mirror is up to speed. The effect of the deep ruby red laser cutting through smoke is mesmerizing.

If laser sky is a little too one-dimensional for you, expand into two dimensions with this vector laser projector, and if monochrome isn’t your thing try an RGB vector projector.

Continue reading “A Laser Effect Projector Built with Safety in Mind”

Hackit: Laser Cut Your Own Jigsaw Puzzle

If you have a laser printer, you’ve got your Christmas presents sorted out. At least if your family likes jigsaw puzzles. The idea is very simple, laminate a photograph onto some laser-cuttable board, and then run the laser over the outline of the pieces. Bam! Instant puzzle.

The trick is generating the puzzle outline, and of course there’s an online application for that. It’s got options that let you customize the piece count and shapes, and then download the result as an SVG image.

Unfortunately, it’s closed-source and makes the pieces a little bit too uniform for our liking — many of the pieces have exactly the same shape as each other. Are you up to the challenge of writing a better one? We’d love to see it, because the idea of a simple puzzle overlay for laser cutters is too good. Help us get started with some brainstorming in the comments below. How do you go about generating meaningfully unique jigsaw edges algorithmically?

Once you’ve got the puzzle cut out, you can seal up the surface nicely, toss it in a box, and then you’ve got a personalized present. To put it together, we suggest an accompanying DIY pick-and-place tool. (And kudos to [Kristina] for the best headline of 2015 on that one!)

Thanks to Hackaday alum [George Graves] for the tip!

Bending the Light

Ruled Hyperboloid CC Prof. William McCallum
Ruled Hyperboloid CC Prof. William McCallum

Everyone knows you can’t visibly bend light over short distances in free air. Or can you? [Jack Pearse] has figured out a way to do it though, or at least make it appear that way. He does it by combining a trick of math and a trick of the eye. The secret is the hyperboloid, a geometric construct described by a quadratic equation. [Jack’s] creation is more specifically a hyperboloid in one sheet. This type of structure allows straight lines to create a an overall curved surface.  Hyperboloids have been used by architects and in construction for years, often in tall structures like water towers.

If a bunch of straight steel beams can form a curved shape, lasers should be able to pull off the same effect. By employing persistence of vision, [Jack] was able to create his hyperboloid with only 10 small lasers. The lasers are mounted on the rim of a bicycle wheel and carefully aimed. The wheel is spun up with using an electric bicycle motor. [Jack] kept things safe by building a centrifugal switch. The switch powers up all the lasers in when the tire is spinning. This ensures no one can be hit by a static beam.

Once the wheel is spinning, all you need is a bit of smoke or haze in the room. The spinning lasers combine to form the hyperboloid shape. You can see the project in action in the video after the break.

Continue reading “Bending the Light”